गुरू घासीदास विश्वविद्यालय (केंदीय विसर्ववालय अधिनय 2009 इ. 25 के अंतर्गत सामित केन्द्रीय विश्ववेषात्रय) कोनी, बिलासपुर - 495009 (छ.ग.)

Guru Ghasidas Vishwavidyalaya (A Central University Established by the Central Universities Act 2009 No. 25 of 2009) Koni, Bilaspur – 495009 (C.G.)

List of Courses Focus on Employability/ Entrepreneurship/ Skill Development

Department

: Electronics and Communication Engineering

Programme Name : B.Tech.

Academic Year : 2020-21

List of Courses Focus on Employability/ Entrepreneurship/Skill Development

Sr. No.	Course Code	Name of the Course
01.	MA201TBS01	Mathematics-I
02.	PH201TBS02	Physics
03.	EC201TES01	Basic Electrical & Electronics Engineering
04.	IT201TES02	Introduction to Information Technologies
05.	EN201THS01	English Communication
06.	PH201PBS01	Physics Lab
07.	ME201PES01	Engineering Graphics
08.	ME201PES02	Workshop Technology & Practices
09.	EC201PES03	Basic Electrical Engineering Lab
10.	MA202TBS03	Mathematics-II
11	CY202TBS04	Chemistry
12	CE202TES03	Engineering Mechanics
13	CS202TES04	Computer Programming
14	CM202TES05	Basic Civil & Mechanical Engineering
15	CY202PBS02	Chemistry Lab
16	CE202PES04	Engineering Mechanics Lab
17	CS202PES05	Computer Programming Lab
18	EC03TPC01	Electronic Devices
19	EC03TPC02	Digital System Design
20	EC03TPC03	Signals and Systems
21	EC03TPC04	Network Theory
22	EC03TBS05	Mathematics-III
23	EC03THS02	Engineering Economics
24	EC03PPC01	Electronics Devices Lab
25	EC03PPC02	Digital System Design Lab
26	EC04TPC05	Analog and Digital Communication

Courses Focus on Employability/Entrepreneurship/Skill Development

Criteria - I (1.1.3)

गुरू घासीदास विश्वविद्यालय (केन्रीय विश्वविद्यालय) कोनी, बिलासपुर - 495009 (छ.ग.)

Guru Ghasidas Vishwavidyalaya (A Central University Established by the Central Universities Act 2009 No. 25 of 2009) Koni, Bilaspur – 495009 (C.G.)

27	EC04TPC06	Analog Circuits
28	EC04TPC07	Microcontrollers
29	EC04TBS06	Numerical Methods
30	EC04TES05	Electronics Measurement & Instrumentation
31	EC04THS03	Effective Technical Communication
32	EC04PPC03	Analog and Digital Communication Lab
33	EC04PPC04	Analog Circuits Lab
34	EC04PPC05	Microcontrollers Lab
35	EC05TPC08	Electromagnetic Waves
36	EC05TPC09	Computer Network
37	EC05TPC10	LIC and its Application
38	EC05TPC11	Control Systems
39	EC05TPE01	Information Theory & Coding
40	EC05TPE02	CMOS Design
41	EC05TPE03	Introduction to MEMS
42	EC05TPE04	Computer Architecture
43	EC05TOE01	Data Structure and Algorithms
44	EC05TOE02	Operating Systems
45	EC05PPC06	Electromagnetic Waves Lab
46	EC05PPC07	Computer Networks Lab
47	EC05PPC08	LIC and its Application Lab
48	EC06TPC12	Digital Signal Processing
49	EC06TPC13	Probability Theory and Stochastic Processes
50	EC06TPE05	Antenna & Wave Propagation
51	EC06TPE06	Power Electronics
52	EC06TPE07	High Speed Devices & Circuits
53	EC06TPE08	Nanoelectronics
54	EC06TOE03	Cryptography & network Security
55	EC06TOE04	Artificial Intelligence
56	EC06TBS07	Life Science
57	EC06PPC09	Digital Signal Processing Lab
58	EC06PPC10	Electronic Measurement Lab
59	EC06PPC11	Mini Project/Electronic Design Wokshop
60	EC5TPC07	Lic & Its Application
61	EC5TPC08	Communication System- II

Courses Focus on Employability/Entrepreneurship/Skill Development

Criteria – I (1.1.3)

गुरू घासीदास विश्वविद्यालय (केन्रीय विश्वविद्यालय) कोनी, बिलासपुर - 495009 (छ.ग.)

Guru Ghasidas Vishwavidyalaya (A Central University Established by the Central Universities Act 2009 No. 25 of 2009) Koni, Bilaspur – 495009 (C.G.)

62	EC5TPC09	Electromagnetic Field Theory
63	EC5TPE01	Microprocessor & Its Application
64	EC5TPE02	Data Structure & Operating System
65	EC5TOE11	Computer Architecture
66	EC5TOE12	OOP in C++
67	EC5TOE13	Introduction to Information Security
68	EC5TOE14	Project Management
69	EC5TOE15	Rural Technology and Community Development
70	EC5PPC07	Lic & Its Application Lab
71	EC5PPE01	Microprocessor & Its Application Lab
72	EC5PPC08	Communication System -II Lab
73	EC6TPC10	Digital Signal Processing
74	EC6TPC11	Antenna & wave propagation
75	EC6TPE03	Data Communication & Computer Networking
76	EC6TPE04	Fundamental of VLSI Design
77	EC6T0E21	UNIX, Operating System
78	EC6T0E22	Probability & Stochastic Process
79	EC6TOE23	Advanced Instrumentation
80	EC6T0E24	Knowledge management
81	EC6T0E25	Engineering System Design Optimization
82	EC6PPE02	VHDL Lab
83	EC6PPC06	Digital Signal Processing Lab
84	EC6PSP01	Seminar
85	EC7TPC12	Microwave Engineering
86	EC7TPC13	Wireless Mobile Communication
87	EC7TPE05	Advance Hardware Design
88	EC7TPE06	Power Electronics
89	EC7TOE31	Wireless Sensor Network
90	EC7TOE32	Information theory and coding
91	EC7TOE33	Nanotechnology
92	EC7TOE34	Optical instrumentation and measurement
93	EC7TOE35	Neural Network and Fuzzy Logic
94	EC7TPPC12	Microwave Engineering Lab
95	EC7TPPE05	Comprehensive Viva
96	EC7PSP02	Project-I

Courses Focus on Employability/Entrepreneurship/Skill Development

Criteria – I (1.1.3)

गुरू घासीदास विश्वविद्यालय (केंद्रीय विस्तविवालय अधिन्यम 2009 इ. 25 के अंतर्गत स्वापित केंद्रीय विश्वविद्यालय) कोनी, बिलासपुर - 495009 (छ.ग.)

Guru Ghasidas Vishwavidyalaya (A Central University Established by the Central Universities Act 2009 No. 25 of 2009) Koni, Bilaspur – 495009 (C.G.)

97	EC8TPC14	Radar and Satellite Engineering
98	EC8TPC15	Optical Fiber Communication
99	EC8TPE07	VLSI Fabrication Methodology
100	EC8TOE41	Basic building block of Microwave Engineering
101	EC8TOE42	Principle of Management
102	EC8TOE43	Mobile Computing
103	EC8TOE44	Embedded System
104	EC8TOE45	Advanced Power Electronics
105	EC8TPPC15	Optical Fiber Communication Lab
106	EC8TPPC16	Advanced RF and Microwave Design lab
107	EC8TPSP03	Project-II
108	EC8TPSP04	Comprehensive Viva
109	ET7100	Research Methodology in engineering
110	EC102	Vaccume Technology
111	EC103	Finite Element Method
112	EC104	Sensors Measurement Science & Technology
113	EC105	Artificial Intelligence
114	EC106	Optimization Techniques
115	EC107	Antenna for Modern Wireless Communication
116	EC108	Wireless and Computer Network

ma for

'वभरगाध्यक्ष (इल. एव सचार अभियॉत्रिको) H.O.D. (Elect. & Comm. Engineering) श्रौ द्वौगिकी संस्थान गडtitute of Tochnology गु. घा. यि., बिलासपुर (छ.ग.) G. G. V. Bilaspur (C.G.)

Criteria - I (1.1.3)

गुरू घासीदास विश्वविद्यालय	•
(केन्द्रीय विश्वविद्यालय अधिनियम 2009 क्र. 25 के अंतर्गत स्थापित केन्द्रीय विश्वविद्यालय)	
कोनी, बिलासपुर - 495009 (छ.ग.)	

	-	-	Duration	IA	ESE	Credits
EC05TPC11 3	1	0	4 hours	30	70	4

CONTROL SYSTEMS

Course Objectives:

The students will be able to learn:

- The type of System, dynamics of physical systems, classification of control system, analysis and design objective.
- How to represent system by transfer function and block diagram reduction method and Mason's gain formula.
- · Time response analysis and demonstrate their knowledge to frequency response.
- · Stability analysis of system using Root locus, bode plot, polar plot, and Nyquist plot.
- Unit I: Introduction to control problem- Industrial Control examples. Transfer function. Block diagram and signal flow graph analysis. Open & Closed-loop systems, Control hardware and their models: potentiometers, synchros, LVDT, dc and ac servomotors, tacho-generators, electro hydraulic valves, hydraulic servomotors, electro pneumatic valves, pneumatic actuators.
- Unit II: Time response of second-order systems, steady-state errors and error constants. Performance specifications in time-domain, proportional, integral and derivative systems. Feed forward and multi-loop control configurations,
- Unit III: Feedback control systems- Stability, steady-state accuracy, transient accuracy, disturbance rejection, insensitivity and robustness. stability concept, relative stability, Routh stability criterion. Root locus method of design. Lead and lag compensation.
- Unit IV: Frequency-response analysis- Polar plots, Bode plot, stability in frequency domain, Nyquist plots. Nyquist stability criterion. Performance specifications in frequency-domain. Frequency domain methods of design, Compensation & their realization in time & frequency domain. Lead and Lag compensation.
- Unit V : State variable Analysis- Concepts of state, state variable, state model, state models for linear continuous time functions, diagonalization of transfer function, solution of state equations, concept controllability & observability. Introduction to Optimal control & Nonlinear control, Optimal Control problem, Regulator problem, Output regulator, tracking problem. Nonlinear system – Basic concept & analysis.

Text/Reference Books:

- 1. Gopal. M., "Control Systems: Principles and Design", Tata McGraw-Hill, 1997.
- 2. Kuo, B.C., "Automatic Control System", Prentice Hall, sixth edition, 1993.
- 3. Ogata, K., "Modern Control Engineering", Prentice Hall, second edition, 1991.
- 4. Nagrath & Gopal, "Modern Control Engineering", New Age International, New Delhi

गुरू घासीदास विश्वविद्यालय (केन्रीय विवविद्यालय) कोनी, बिलासपुर - 495009 (छ.ग.)

Guru Ghasidas Vishwavidyalaya (A Central University Established by the Central Universities Act 2009 No. 25 of 2009) Koni, Bilaspur – 495009 (C.G.)

Sub Code	L	Т	P	Duration	IA	ESE	Credits
EC05TPE01	3	0	0	3 hours	30	70	3

INFORMATION THEORY & CODING

Course Objectives:

- Design the channel performance using Information theory.
- Comprehend various error control code properties.
- Apply linear block codes for error detection and correction.
- Apply convolution codes for performance analysis & cyclic codes for error detection and correction.
- Apply Turbo coding and decoding for error detection and correction.

Unit I: Source Coding: Introduction to Information Theory, Uncertainty and Information, Average Mutual Information and entropy, Information Measures for continuous Random Variables, Source Coding Theorem, Huffman coding.

- Unit II: Channel Capacity Coding: Channel Models, Channel Capacity, Channel Coding, Information Capacity Theorem, Shannon Limit, Markov sources.
- Unit III: Error Control Coding (Channel Coding) Linear Block Codes for Error Correction &

Cyclic Codes: Introduction to Error Correcting Codes, Basic Definitions, Matrix Description of Linear Block Codes, Equivalent Codes, Parity Check Matrix, Decoding of a Linear Block Code, Syndrome Decoding, Hamming Codes. Cyclic Codes: Polynomials, The Division algorithm for Polynomials, A Method for Generating Cyclic codes, Matrix Description of cyclic codes, Burst Error Correction.

- Unit IV: Convolution Codes: Introduction to Convolution Codes, Tree codes and Trellis Codes, Polynomial Description of Convolution Codes (analytical Representation), distance Notions for Convolution Codes, The Generating Function, Matrix Description of Convolution Codes, Viterbi Decoding, Distance Bounds for Convolution Codes.
- Unit V: Turbo Codes: Turbo codes, Turbo decoding, Distance properties of turbo codes, Convergence of turbo codes

Text/Reference Books:

- 1. Simon Haykin, Digital Communications, Wiley India Edition, 2009
- 2. N. Abramson, Information and Coding, McGraw Hill, 1963.
- 3. M. Mansurpur, Introduction to Information Theory, McGraw Hill, 1987.
- 4. R.B. Ash, Information Theory, Prentice Hall, 1970.
- 5. Shu Lin and D.J. Costello Jr., Error Control Coding, Prentice Hall, 1983.
- 6. Todd K. Moon, "Error Correction Coding", 1st Edition, Wiley-Interscience, 2006.
- F. J. MacWilliams, N. J. A. Sloane, "The Theory of Error-Correcting Codes", North-Holland, Amsterdam, 1977
- 8. R. E. Blahut, "Algebraic Codes for Data Transmission", 1st Edition, Cambridge University Press 2003.
- Cary W. Huffman, Vera Pless, "Fundamentals of Error-Correcting Codes", 1st Edition, Cambridge University Press, 2003.
- Rolf Johannesson and Kamil Sh. Zigangirov, "Fundamentals of Convolutional Coding", IEEE Press, 1999.

गुरू घासीदास विश्वविद्यालय (केन्रीय विश्वविद्यालय अधिन्यम 2009 ह. 25 के अंतर्गत स्वापित केन्न्रीय विश्वविद्यालय) कोनी, बिलासपुर - 495009 (छ.ग.)

Guru Ghasidas Vishwavidyalaya (A Central University Established by the Central Universities Act 2009 No. 25 of 2009) Koni, Bilaspur – 495009 (C.G.)

Sub Code	L	Т	P	Duration	IA	ESE	Credits
EC05TPE02	3	0	0	3 hours	30	70	3

CMOS DESIGN

Course Objectives:

· Impart knowledge of MOS transistor theory and CMOS technologies.

- Impart knowledge on architectural choices and performance tradeoffs involved in designing and realizing the circuits in CMOS technology, study of VHDL language
- Unit I: FUNDAMENTALS OF MOSFETS: Introduction to MOS transistor, basic operation, threshold voltage ,V-I characteristic ,Depletion MOSFET ,trans conductance, PMOS and its V-I characteristic, aspect ratio and its implication, channel length modulation, substrate bias effect, electrical parameters of MOSFETS.
- Unit II: CMOS INVERTER: Introduction, ideal inverter, Logic level standards, VTC of inverter, Noise margin, Basic NMOS inverter, CMOS inverter, design technique, inverter switching characteristic, delay times, transient effects, power dissipation, introduction to bi-CMOS inverter
- Unit III: STATIC AND DYNAMIC LOGIC CIRCUITS: Introduction, Various Static CMOS logic gate design ,Pseudo-nMOS gates ,pass transistor logic, transmission gates, tristate buffer, dynamic logic, Evaluate logic, Domino CMOS logic, Non ideal effects of dynamic logic circuits
- Unit IV: SEQUENTIAL AND COMBINATIONAL CIRCUITS: Types of regenerative circuits, bistability principle, basics S-R flip flop, JK flip-flop, Master slave Flip Flop, D latch, Static Vs Dynamic latch ,memory system, types of semiconductor memory, Dynamic RAM, Static RAM.
- Unit V: INTRODUCTION TO VHDL: Introduction and use of VHDL, Entity and Architecture Declaration, Types of Models of Architecture, Data objects, Data types, Operators ,concurrent and sequential statements, process statements, case ,if, when statements ,Design of sequential and combinational circuits.

Text/References books:

- 1. Douglas A. Pucknell & Kamran Eshraghian "Basic VLSI Design", PHI 3rd Edition.
- Neil H.E. Weste, David Harris, Ayan Banerjee, "CMOS VLSI Design-A Circuits and Systems Perspective", Pearson Education 3rd Edition.
- 3. J Bhaskar, "A VHDL Primer", Pearson Publication.
- 4. Brow and Varsenic "Fundamentals of VLSI Design Techniques with VHDL" MGH Publication.
- Angsuman Sarkar and Swapandip De, "VLSI design and EDA tools", SCITECH Publication.

Course outcomes:

At the end of this course, students will demonstrate the ability:

- · To introduce the concept of VLSI.
- · To introduce the concept of MOS fabrication, MOS design and different MOS circuits.
- · To introduce the concept of VHDL.

गुरू घासीदास विश्वविद्यालय
(केन्द्रीय विश्वविद्यालय अधिनियम 2009 क्र. 25 के अंतर्गत स्थापित केन्द्रीय विश्वविद्यालय)
कोनी, बिलासपर - 495009 (छ.ग.)

1	Sub Code	L	Т	P	Duration	IA	ESE	Credits
[EC05TPE03	3	0	0	3 hours	30	70	3
			IN	FRODU	UCTION TO M	IEMS		
Cour	se Objectives:							
•	To provide kno				ors and solid mecha		oricate MI	MS devices.
:	m ·				abrication techniqu	ies.		
•	To introduce di	ifferent n	naterial	s used fo	r MEMS			
•	To educate Mechanical eng			ications	of MEMS to	disciplin	nes beyo	nd Electrical an
11			1.00		A MEMO	D		Construction Construction
Unit								Fransducers- Sensor
								IS processes - Nev
								iconductor devices
					eam bending- Tors			
Unit								ors - Applications
	Interdigitated	Finger	capaci	tor - Co	mb drive devices	- Micro	Grippers	- Micro Motors
	Thermal Sens	sing and	Actuat	ion – Th	ermal expansion -	- Thermal	couples -	Thermal resistors
	Thermal Bim	orph –	Applica	tions -	Magnetic Actuator	s - Micro	omagnetic	components - Cas
	studies of ME	MS in n	nagnetio	c actuator	rs- Actuation using	Shape Me	emory All	oys.
Unit	III : Sensors A	nd Actu	ators-l	I: Piezon	resistive sensors -	Piezoresi	stive sens	or materials - Stres
	analysis of m	echanica	al elem	ents - Aj	pplications to Inert	ia, Pressu	re, Tactile	and Flow sensors
	Piezoelectric	sensors a	and actu	uators - p	piezoelectric effect	s – piezoel	lectric mat	terials - Application
	to Inertia, Ac	oustic, T	actile a	nd Flow	sensors.			
Unit	IV: Micromach	nining:	Silico	n Anisot	ropic Etching-Ani	isotrophic	Wet Etcl	ning-Dry Etching o
	Silicon - Plas	ma Etch	ing – D	eep Rea	ction Ion Etching (DRIE)-Iso	otropic We	et Etching-Gas Phas
	Etchants - C	ase stud	lies -B	asic surf	face micro machin	ing proce	sses-Struc	tural and Sacrificia
	Materials - A	ccelerati	on of s	acrificial	Etch - Striction and	nd Antistri	ction met	nods - LIGA Proces
	- Assembly of	f 3D ME	MS – F	oundry p	process.			
Unit	V: Polymer and	Optical	I MEM	S: Polyn	ners in MEMS- P	olimide - S	SU-8 - Lie	quid Crystal Polyme
	(LCP) - PDN	AS - PN	MA -	Parylen	e - Fluorocarbon	- Applicat	tion to Ad	celeration, Pressure
	Flow and Tac	tile sens	sors- O	ptical M	EMS - Lenses and	Mirrors -	- Actuato	rs for Active Optica
	MEMS.							
Text	books:							
					earson Education I		00	
					ign', Springer Publ is Design and Man			raw Hill, New Delh
	2002.							

गुरू घासीदास विश्वविद्यालय (केन्रीय विश्वविद्यालय) कोनी, बिलासपुर - 495009 (छ.ग.)

Guru Ghasidas Vishwavidyalaya (A Central University Established by the Central Universities Act 2009 No. 25 of 2009) Koni, Bilaspur – 495009 (C.G.)

	Sub Code	L	T	P	Duration	IA	ESE	Credits
L	EC05TPE04	3	0	0	3 hours	30	70	3
			C	OMPUT	ER ARCHITEC	FURE		
Cour	se Objectives:							
					in computer archit			
•					 system resource in performance. 	s such as	memory	technology and I/
					ds in computing ar	chitecture.		
								presentation format
Unit			-					es and Programmir
		-	point	represent	auon, instruction	Sets, Form	liais, Typ	es and riogrammin
	Consideratio							
Unit	II: Data path De	sign: F	ixed-Po	ant Arith	metic, Combinatio	onal ALU	and Sequ	ential ALU, Floatir
	point arithme	etic and	Advan	ced topic	s, Hardware Algor	rithm – Mu	ltiplicatio	n, Division.
Unit	III: Control Desi	ign: Ba	sic Con	cepts, H	ardwired control,	Microprog	rammed (Control, CPU contr
	Unit and Mu	ltiplier	control	Unit, Pip	eline Control.			
Unit	IV: Memory O	rganiza	tion: N	femory d	levice characterist	tics, RAM	technolo	gy and Serial acces
	memories te	chnolog	gy, mult	tilevel m	emory systems, A	ddress tran	slation an	d Memory allocation
	systems, Cac	he men	nory.					
Unit	V: System Orga	nizatio	n: Prog	rammed	I/O, DMA, Intern	upts and l	O Proces	ssors, Processor-lev
	Parallelism,	Multipr	ocessor	and Fau	It tolerance system	1.		
Text	/Reference Book	s.						
			Comput	ter Organ	isation", Fifth Edi	tion.		
					Organisation", PH			
3.	 Y.Chu, "Comp Hall Edition 	uter Or	ganizat	ion and	Microprogrammin	g", II, Eng	glewood	Chiffs, N.J., Prentic
4.	M.M.Mano, "C	ompute	r Syster	m Archite	ecture", Edition			
					d Programming",	McGraw H	ill, N.V. I	Edition
5.			Archite	atura and	Organization" Pl	HI Second	edition	
6.	Hayes J.P, "Con							
6.					Pal Chaudhari, P			i i
6. 7. Cour	Computer Orga	nizatio	ns and I	Design- P	P. Pal Chaudhari, P	rentice-Ha		L .
6. 7. Cour At the	Se Outcomes: e end of these cou	nization	ns and I lents wi	Design- P		rentice-Ha		
6. 7. Cour At the	se Outcomes: e end of these cou Learn how com	rse stud	ns and I lents wi work	Design- P	P. Pal Chaudhari, P strate the ability to	rentice-Ha		L
6. 7. Cour At the	. Computer Orga se Outcomes: e end of these cou Learn how com Know basic prin	nization rse stud puters nciples	lents wi work of com	Design- P ill demon puter's w	Pal Chaudhari, P strate the ability to orking	rentice-Ha		I
6. 7. Cour At the	se Outcomes: e end of these cou Learn how com	nization rse stud puters nciples forman	lents wi work of comp ice of co	Design- P ill demon puter's w omputers	Pal Chaudhari, P strate the ability to orking	rentice-Ha		

Courses Focus on Employability/Entrepreneurship/Skill Development

Criteria – I (1.1.3)

गुरू घासीदास विश्वविद्यालय
(केन्द्रीय विश्वविद्यालय अधिनियम 2009 क्र. 25 के अंतर्गत स्थापित केन्द्रीय विश्वविद्यालय)
कोनी, बिलासपर - 495009 (छ.ग.)

	Sub Code EC05TOE01	L 3	T 0	P 0	Duration 3 hours	IA 30	ESE 70	Credits 3
8	ECOSIOE01	3	U	U	3 nours	30	/0	3
			DAT	A STRU	CTURE & ALGO	RITHMS		
Cour	se Objectives:							
:					Linked Lists, Stacks s Like Sorting, Sear			
	Understand the					ching, inse	and and	Deletion of Data
•	Introduce Vario	ous Tech	iniques	for Rep	presentation of the E	ata in in N	lemory.	
Unit	I: Algorithm A	nalysis	and C	omplex	ity, Data Structure	- Definitio	on, Type	s of Data Structure
		and the second second						ques, Linear Search
	Binary Search		1.000					1
Unit			Basic	Concep	ts. Sorting Algorith	ms: Insert	ion (Inse	rtion Sort), Selectio
	e e							and Merging (Merg
	Sort) Algorith		. (,,,,			
Unit			Stacks	: Basic	Stack Operations.	Representa	tion of a	Stack Using Array
								stfix Transformation
	Evaluating Ar			č	a, racionar carcar	ation, ini	A 10 10.	in in the stormation
					Penresentation of a	Queue Us	ing Arra	y, Implementation of
					-		-	lications of Queues
	Round Robin		-	lack. C	irculai Queues, I'ii	only Que	ues. App	incations of Queues
Unit		-		Single	Linked List Renn	econtation	of a Lin	ked List in Memory
Unit								List, Advantages an
	Disadvantages				, Circular Linked L	ist, Double	Linked	List, Auvantages an
Unit					v Tree Binary Tree	Traversals	Creation	n of Binary Tree from
Unit								ary Search Tree, BS
	Operations: In				Traversais. Threaded	I Dinary I	rees. Dilla	ary Search free, BS
					ations of Graphs: I	eing Linke	d List ar	nd Adjacency Matrix
						-		stra's Shortest Path
			•		n's Algorithm, Wars			istra's Shortest Pau
	Winning Spa	unnig i	ice Us	ing Film	i s Aigorium, wars	alali s Alg	onum	
	books:							
1.	Fundamentals Science Press.	of Data	Struct	ures, Ill	ustrated Edition by	Ellis Ho	rowitz, S	artajSahni, Compute
	G. a. V. Pai, Da				rithms-2008, TMH			
3.	Debasis,Sarnan	ta- Class	sic Dat	a Struct	ures- 2/E, PHI,2009			
	ence books:							
1.	E. Horowitz, Sa	artajSah	ni and	Susan a	nderson, W. H. Free	man -Fund	amentals	of Data Structures i
2.		s- Introd	luction	of Data	Sructure-Prentice H	all of Indi	a	

गुरू घासीदास विश्वविद्यालय
(केन्द्रीय विश्वविद्यालय अधिनियम 2009 क्र. 25 के अंतर्गत स्थापित केन्द्रीय विश्वविद्यालय)
कोनी, बिलासपर - 495009 (छ.ग.)

Sub Code	L	Т	Р	Duration	IA	ESE	Credits
EC05TOE02	3	0	0	3 hours	30	70	3

OPERATING SYSTEMS

Course Objectives:

- · To Understand the Services Provided by Operating System
- To Understand the Working and Organization of Process and its Scheduling and Synchronization.
- To Understand the Concept of Deadlock.
- To Understand Different Approaches of Memory Management Techniques.
- To Understand the Structure and Organization of the File System.

Unit I: Definitions, Components and Types of Operating System, Operating System Services, System

Calls, System Programs, Process Concepts, Process State & Process Control Block, Process Scheduling, Scheduling Criteria, Scheduling Algorithms, Multiple- Processor Scheduling, Real-Time Scheduling, Threads Introduction

- Unit II: The Critical Sections Problem, Semaphores, Classical Problem of Synchronization, Deadlock Characterizations, Method for Handling Deadlocks, Deadlock Prevention, Deadlock Avoidance, Deadlock Detection, Recovery from Deadlock, Combined Approach to Deadlock
- Unit III: Storage Management Logical Versus Physical Address Space, Swapping, Contiguous Allocating, Paging, Segmentation, Virtual Memory, Demand Paging, Performance of Demand Paging, Page Replacement, Page Replacement Algorithms, Thrashing, Demand Segmentation
- Unit IV: Disk Structure, Disk Scheduling, Disk Management, Swap Space Management, Disk Reliability, Stable Storage Implementation, File Concepts, Directory Structure, Protecting, I/O Subsystem Overview, I/O Hardware, Application I/O Interface, Kernel I/O Subsystem
- Unit V: Introduction to distributed systems: I/O Subsystem Principles of I/O Hardware: I/O devices, device controllers, direct memory access. Principles of I/O Software: Goals, interrupt handlers, device drivers, device independent I/O Software. User space I/O software, I/O protection. Distributed file systems: Design, Implementation, and trends. Performance Measurement: Important trends affecting performance issues, performance measures, evaluation techniques, bottlenecks and saturation feedback loops. Case study of UNIX, DOS and WINDOWS operating systems.

Text books:

- 1. Silberschatz, Galvin, Gagne-Operating System Concepts -Wiley Student Edition
- 2. Milan Milenkovic-Operating System Concepts & Design-TMH Publication
- 3. Andrew S. Tanenbaum-Modern Operating System-PHI

Reference books:

- 1. Operating System: A Design-oriented Approach, 1st Edition by Charles Crowley, IrwinPublishing
- 2. Operating Systems: A Modern Perspective, 2nd Edition by Gary J. Nutt, Addison-Wesley
- 3. Design of the Unix Operating Systems, 8th Edition by Maurice Bach, Prentice-Hallof India
- 4. Understanding the Linux Kernel, 3rd Edition, Daniel P. Bovet, Marco Cesati, O'Reillyand Associates

गुरू घासीदास विश्वविद्यालय
(केन्द्रीय विश्वविद्यालय अधिनियम 2009 क्र. 25 के अंतर्गत स्थापित केन्द्रीय विश्वविद्यालय)
कोनी, बिलासपर - 495009 (छ.ग.)

Sub Code	L	Т	P	Duration	IA	ESE	Credits
EC05PPC06	0	0	2	2 Hours	30	20	1

ELECTROMAGNETIC WAVES LAB

Course Objectives:

- To understand the concepts and working principles of the devices used in propagation of Electromagnetic Waves
- Understand principle of radiation and radiation characteristics of an antenna

List of Experiments:

- 1. Design of Rectangular waveguide
- 2. Design of Circular Waveguide
- 3. Design and Analysis of Transmission line
- 4. Design of Transmission line as a circuit element
- 5. Analysis and use of smith chart for impedance calculation
- 6. Analysis and use of smith chart for admittance calculation
- 7. Field visualization in waveguide
- 8. Analysis of radiation pattern and various parameter of antenna
- 9. Design of Monopole Antenna
- 10. Design of dipole Antenna

Course Outcomes:

At the end of this course students will demonstrate the ability to

- · Use sections of transmission line sections for realizing circuit elements
- Analyze wave propagation on metallic waveguides in modal form
- Understand principle of radiation and radiation characteristics of an antenna

गुरू घासीदास विश्वविद्यालय (केन्रीय विवविद्यालय) कोनी, बिलासपुर - 495009 (छ.ग.)

Guru Ghasidas Vishwavidyalaya (A Central University Established by the Central Universities Act 2009 No. 25 of 2009) Koni, Bilaspur – 495009 (C.G.)

Sub Code	L	Т	Р	Duration	IA	ESE	Credits
EC05PPC07	0	0	2	2 Hours	30	20	1

COMPUTER NETWORK LAB

Course Objectives:

Student will try to learn:

- To understand the working principle of various communication protocols.
- To analyze the various routing algorithms.
- To know the concept of data transfer between nodes.

List of Experiments:

- 1. Study of Local Area Network.
- 2. Study of Network Devices in Detail.
- 3. Program to calculate the channel capacity.
- Program to calculate SINR (signal-to-noise-plus-interference ratio) using the channel capacity theorem.
- 5. Program to calculate Bandwidth using the channel capacity theorem.
- 6. Study of Ethernet.
- 7. Study of pure aloha protocol.
- 8. Study of slotted protocol.
- 9. Study of FTP (File transfer Protocol).
- 10. Study of Token Bus Protocol.
- 11. Study of Token Ring Protocol.
- 12. Study of Network Topologies.
- 13. Study of Selective Repeat protocol.
- 14. Study of CSMA-CD Protocol

Course Outcomes:

At the end of this course students will demonstrate the ability to:

- · Identify and use various networking components
- · Understand different transmission media and design cables for establishing a network.
- Implement device sharing on network
- · Learn the major software and hardware technologies used on computer networks.

गुरू घासीदास विश्वविद्यालय (केन्रीय विवविद्यालय) कोनी, बिलासपुर - 495009 (छ.ग.)

Guru Ghasidas Vishwavidyalaya (A Central University Established by the Central Universities Act 2009 No. 25 of 2009) Koni, Bilaspur – 495009 (C.G.)

Sub Code	L	Т	P	Duration	IA	ESE	Credits
EC05PPC08	0	0	2	2 Hours	30	20	1

LIC AND IT'S APPLICATIONS LAB

Course Objectives:

Student will try to learn:

- To design amplifier using transistor.
- To design amplifier using op-amp.
- To design oscillators.
- To design filters.

List of Experiments

- 1. To design a bistable multivibrator circuit and to draw its output waveform.
- 2. To design a monostable multivibrator circuit and to draw its output waveform.
- 3. To design a astable multivibrator circuit and to draw its output waveform.
- 4. To design an inverting amplifier using opamp (741) and study its frequency response.
- 5. To design a non-inverting amplifier using opamp (741) and study its frequency response.
- 6. To design a summing amplifier using opamp (741)
- 7. To design a differential amplifier using opamp (741) and find its CMRR.
- 8. To determine SVRR and slew rate of an opamp (741)
- 9. To design an astable multivirator using 555 timer
- 10. To design a monostable multivibrator using 555 timer.
- 11. To design and study a diode clamper circuit.
- 12. To design and study diode series and shunt clipper.
- 13. To measure the input impedance of an voltage follower using opamp (741)
- 14. To design and study comparator circuit using opamp (741)
- 15. To study the voltage regulation of 78xx and 79xx series of voltage regulators.

Course outcomes:

Upon successful completion of the course, students will be able to

- · Design and test amplifiers using transistors and op-amps
- Analyze and test oscillators.
- · Implement and design of analog active filters using op-amps.
- Design and test voltage regulated power supply.
- · Implement and understand the voltage regulators.

गुरू घासीदास विश्वविद्यालय (केदीय विस्तविवाल्य अधिनियम 2000 क्र. 25 के अंतर्गत स्वापित केन्द्रेय विश्वविद्यालय) कोनी, बिलासपुर - 495009 (छ.ग.)

Guru Ghasidas Vishwavidyalaya (A Central University Established by the Central Universities Act 2009 No. 25 of 2009) Koni, Bilaspur – 495009 (C.G.)

	Sub Code L T P Duration IA ESE Credits
	EC06TPC12 3 1 0 4 hours 30 70 4
	DIGITAL SIGNAL PROCESSING
Cou	rse Objectives:
	To provide an overview of topics in basic and advanced digital signal processing technique with applications to speech and image processing.
Unit I	: Introduction of discrete time signals, Representation of signals on orthogonal basis, Sampling ar
	reconstruction of signals, Discrete systems attributes, Introduction of Z-Transform, Analysis
	LSI systems, Frequency Analysis, Inverse Systems, Discrete Fourier Transform (DFT
	Convolution, Correlation, Fast Fourier Transform Algorithm, Decimation -in-Time, Decimation
	-in-Frequency,
Unit I	I: Realization of Systems: Realization of digital linear system, Structures for realization of discre
	time systems, Structures for IIR and FIR systems, Realization of IIR filter: Direct form-I, Direct
	form-II, Signal flow graph, Cascade form, Parallel structure, Lattice structure, Lattice-Ladd
	structure. Realization of FIR filter: Transversal structure, linear phase realization, Lattic
	structure.
Unit 1	III: Infinite Impulse Response Filter design (IIR): Features of IIR filters, Design stages, Filter
	design by Approximation of Derivatives, Impulse invariance method, bilinear transformation
	method, Butterworth and Chebyshev Design Method, Frequency Transformations in Analog and
	Digital domain.
Unit-I	V: Finite Impulse Response (FIR) Filter Design: Linear phase response- Symmetric ar
	Antisymmetric, Design by Window method, Optimal method, Rectangular, Triangular, Hannin
	Hamming, Blackman & Kaiser Window, Frequency sampling method, Design of FI
	differentiators, Design of Hilbert transformer, Comparison of various design methods.
Unit	V: Sampling Theorem and Multi-rate DSP: Introduction, Sampling Rate Conversion by ration
	factor, Decimation of Sampling rate by an Integer factor, Interpolation of sampling rate by a
	Integer Factor, Sampling rate alteration or conversion by a rational factor.
	Applications of Digital Signal Processing: Introduction, Applications of DSP Digital Sinusoid
	Oscillators, Digital Time Control Circuits, Digital Comb Filters. Applications in broader sense
	Applications of DSP in Image Processing, Applications of DSP to Radar, Applications of DSP
	speech processing.
Text	/Reference Books:
2	 S. K. Mitra, "Digital Signal Processing: A computer based approach", McGraw Hill, 2011. A.V. Oppenheim and R. W. Schafer, "Discrete Time Signal Processing", Prentice Hall, 1989. J. G. Proakis and D.G. Manolakis, "Digital Signal Processing: Principles, Algorithms Ar

गुरू घासीदास विश्वविद्यालय (केन्रीय विवविद्याल अधिन्य 2009 ज्ञ. 25 के अंतर्गत खारित केन्द्रीय किववेदालय) कोनी, बिलासपुर - 495009 (छ.ग.)

Guru Ghasidas Vishwavidyalaya (A Central University Established by the Central Universities Act 2009 No. 25 of 2009) Koni, Bilaspur – 495009 (C.G.)

Sub Code	L	Т	P	Duration	IA	ESE	Credits
EC06TPC13	3	0	0	3 hours	30	70	3

PROBABILITY THEORY AND STOCHASTIC PROCESSES

Course Objectives:

The main objective of this course is to provide students with the foundations of probabilistic and statistical analysis mostly used in varied applications in engineering and science like disease modelling, climate prediction and computer networks etc

Unit I: Introduction to Probability and random variables: Definitions, scope and history; limitation of classical and relative-frequency-base definitions, Sets, fields, sample space and events; axiomatic definition of probability. Combinatorics: Probability on finite sample spaces. Joint and conditional probabilities, independence, total probability; Bayes' rule and applications. The random variable concept, Distribution function, Density function, The Gaussian random variable, other distribution and density examples, Conditional distribution and density functions.

- Unit II: Operation on One Random Variable Expectation & Multiple Random Variables Expectation, Moments, Functions that give Moments, Transformations of a random variable, Computer generation of one random variable. Vector random variables, Joint distribution and its properties, Joint density and its properties, Conditional distribution and density, Statistical independence, Distribution and density of a sum of random variables, Central limit theorem.
- Unit III: Random Processes-The random process concept, Stationarity and independence, Correlation functions, Measurement of correlation functions, Gaussian random processes, Poisson random processes, Complex random processes
- Unit IV: Spectral Characteristics of Random Processes-Power density spectrum and its properties, Relationship between power spectrum and autocorrelation function, Cross-Power density spectrum and its properties, Relationship between cross-power spectrum and cross-correlation function, Some noise definitions and other topics, power spectrum of complex processes.

Unit V: Queueing Theory Introduction markov sequences Queueing Systems, Birth-Death Process The M/M/1 Queueing System The M/M/s Queueing System The M/M/1/K Queueing System The M/M/s/K Queueing System.

Text books:

- Peyton Z. Peebles"Probability, Random Variables & Random Signal Principles ", TMH, 4th Edition, 2001.
- 2. Donald Childers, Scott Miller "Probability and Random Processes", ,2Ed,Elsevier,2012

Reference Books:

- 1. Theory of probability and Stochastic Processes-Pradip Kumar Gosh, UniversityPress
- Probability and Random Processes with Application to Signal Processing Henry Stark and John W. Woods, Pearson Education, 3rd Edition.
- Probability Methods of Signal and System Analysis- George R. Cooper, Clave D. MC Gillem, Oxford, 3rd Edition, 1999.

Cour	EC06TPE05 3 1 0 4 hours 30 70 4
Cou	ANTENNA & WAVE PROPAGATION
	rse Objectives:
	To understand the concepts of radiation from loop and wire antenna. To understand the basic concept of large gain and broadband antennas. To understand the concepts and working principle of currently popular antennas. To understand the working of smart antenna and beam forming to fulfill the requirement of latest technologies.
Unit	I: Fundamental Concepts- Physical concept of radiation, Radiation pattern, near-and far-field
	regions, reciprocity, directivity and gain, effective aperture, polarization, input impedance,
	efficiency, Friis transmission equation, radiation integrals and auxiliary potential functions.
Unit	II: Radiation from Wires and Loops- Infinitesimal dipole, finite-length dipole, linear elements near
	conductors, dipoles for mobile communication, small circular loop.
Unit	III: Aperture and Reflector Antennas-Huygens' principle, radiation from rectangular and circular
	apertures, design considerations, Babinet's principle, Radiation from sectoral and pyramidal
	horns, design concepts, prime-focus parabolic reflector and cassegrain antennas. Broadband
	Antennas- Log-periodic and Yagi-Uda antennas, frequency independent antennas, broadcast antennas.
Unit	IV: Micro strip Antennas- Basic characteristics of micro strip antennas, feeding methods, methods of
Unit	analysis, design of rectangular and circular patch antennas, Dielectric Resonator Antenna,
	Antenna Arrays-Analysis of uniformly spaced arrays with uniform and non-uniform excitation
	amplitudes.
Unit	V: Planar arrays, synthesis of antenna arrays, Basic Concepts of Smart Antennas-Concept and
	benefits of smart antennas, fixed weight beam forming basics, Adaptive beam forming,
	Different modes of Radio Wave propagation used in current practice.
Text	Reference Books:
	 J.D. Kraus, "Antennas", McGraw Hill, 1988. C.A. Balanis, "Antenna Theory - Analysis and Design", John Wiley, 1982.
	3. R.E. Collin, "Antennas and Radio Wave Propagation", McGraw Hill, 1985.
	 R.C. Johnson and H. Jasik, "Antenna Engineering Handbook", McGraw ill, 1984. I.J. Bahl and P. Bhartia, "Microstrip Antennas", Artech House, 1980.
	 R.K. Shevgaonkar, "Electromagnetic Waves", Tata McGraw Hill, 2005 R.E. Crompton, "Adaptive Antennas", John Wiley
Cou	arse Outcomes:
Cou	