SCHOOL OF STUDIES OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF MECHANICAL ENGINEERING

Scheme of Teaching and Evaluation 2024-25 (As per NEP-2020)
Choice Based Credit System (CBCS) and Outcome Based Education (OBE)
(Effective from the Academic year 2024-25)

	V-SEN	MESTER SCHI	EME OF TEACHING & EVA			2024	1-25				
				Teach Hours				Exa	minati	ion	Credits
S. N.	Course Type	Course Code	Course Title	Theory	Tutorial	Practica I/Drawi	Examinatio n in Hours	CIA Marks	SEA Marks	Total Marks	
				L	Т	P	Exan n in	CIA	SEA	Tota	
1	Department Core	MEUETT1	Machine Design – I	3	1	-		40	60	100	4
2	Department Core	MEUETT2	Dynamics of Machines	3	1	-		40	60	100	3
3	Department Core	MEUETT3	Heat and Mass Transfer	3	-	-		40	60	100	3
4		MEUETI1	Innovation and Design Thinking	1	-	-		100	-	100	1
	Industry Course	MEUETI2	Maintenance Engineering and Management								
5	Department Core	MEUETT4	Automobile Engineering	3	-	-		40	60	100	3
6	Practical	MEUELT1	Heat and Mass Transfer Lab	-	1	2		20	30	50	1
7	Practical	MEUEPV1	Mini Project - II	-	-	3		20	30	50	2
8	Practical	MEUELT2	Theory of Machines Lab	-	-	2		20	30	50	1
9	Practical	MEUELT3	Modeling and Simulation – I Lab	1	-	2		20	30	50	2
		Total		14	1	09		340	360	700	20
	Not for ME students										
	lit Definition:	10.14	> Four credit courses are to be de								

- >1-hour lecture (L) per week per semester = 1 Credit
- >>1-hour tutorial (**T**) per week per semester = **1** Credit
- \geq 2-hour Practical/Drawing(**P**) per week per semester = 1 Credit
- ➤ Three credit courses are to be designed for 40 hours of Teaching-Learning process.
- ➤ Two credit courses are to be designed for 30 hours of Teaching-Learning process.
- \succ One credit courses are to be designed for 15 hours of Teaching-Learning process

Note: The above is applicable only to THEORY courses

CIA: Two internal Class Tests, each of 15 Marks.

Assignment: 10 Marks

SEA: Semester End Assessment – 60 marks

Department of Mechanical Engineering

CODE	COURSE NAME	HOUR	S PER W	VEEK	CIA	SEA	CREDIT
	MACHINE DEGICN. I	L	T	P	40	60	
	MACHINE DESIGN - I	3	1	-	40		4

Course objectives:

- 1. Impart knowledge on various types of stress components and theories of failure.
- 2. Emphasis on the significance of loading nature on the design of machine elements.
- 3. Make the students understand the design of temporary and permanent joints.
- 4. To enable students to design IC engine components.

I D II E	
UNIT – I	Steady and Variable stress on machine elements
	Selection of Materials, Design Stress – Tension, Bending and Torsion, Factor
	of Safety, Stress concentration factor, Theories of failures, Calculation of
	principle stresses for various load combinations, Notch sensitivity, Design for
	variable and repeated loadings, Fatigue stress concentration factor and
	Endurance diagrams.
UNIT -II	Design of shafts and Couplings
	Transmission shaft, Design against static load, Design for strength, Rigidity
	and stiffness.
	Types of keys and Splines, Design of Cotter joint, Sleeve and Cotter joint and
	Design of Knuckle joint.
	Couplings: Types of couplings, Design of flange and flexible couplings,
	Compression coupling, Muff coupling.
UNIT -III	Threaded Fasteners
	The geometry of thread forms, Terminology of screw threads and thread
	standards, Initial tension, Relation between bolt tension and torque, and Design
	of statically loaded tension joints.
	Design of bolted joints due to eccentric loading. Power Screws: Power screws,
	Force analysis, Stresses in screw, Coefficient of friction, Efficiency of thread.
UNIT IV	Welded and Riveted joints
	Welded joint: Types of welded joints, Stresses in butt and fillet welds,
	eccentrically loaded joint, welded joint subjected to bending moment, Design
	procedure, Fillet welds under varying loads.
	Riveted Joints: Types of rivet heads, joints, Failure of riveted joint, Strength of
	rivet joint, Efficiency of riveted joint, Design of riveted joint, eccentrically
	loaded riveted joint.
IDIE	D : CIGE : D
UNIT V	Design of IC Engine Parts
	Flywheels considering stresses in rims and arms for engines and punching
	machines
	Connecting Rods - Forces Acting on the Connecting Rod - Design of
	Connecting Rod.
	Crankshafts - Design Procedure for Crankshaft - Design for Centre Crankshaft
	- Side or Overhung Crankshaft.

Department of Mechanical Engineering

TEXT BOOKS:

- 1. Machine Design- J. E. Shigley -McGraw Hill Publications.
- 2. Design of Machine Elements V. B. Bhandari, TMH Publications.
- 3. Machine Design, Spott, TMH Publications.
- 4. PSG Design Data Book PSG College, Coimbatore.
- 5. Principles of Mechanical Design, R. Phelan, McGraw Hill Pub

REFERENCE BOOKS:

1. Machine Design – R. S. Khurmi, Chand Publications.

WEB RESOURCES:

https://iitg.ac.in/mech/academics/masters/machine-design/

https://archive.nptel.ac.in/courses/112/106/112106137/

https://www.me.iitb.ac.in/~ramesh/courses/ME423/Introduction1.pdf

https://www.purdue.edu/freeform/me354/wpcontent/uploads/sites/28/2022/06/220607 ME35

4 LectureNotes BHess.pdf

After	After completion of the course, the students will be able to							
COs	Statement	Highest BTL						
CO1	Apply the concept of stress and the associated failure theories in the design of machine elements	К3						
CO2	Design the shaft and temporary joins for varied application	K3						
CO3	Calculate design parameters for threaded fasteners as per the standards	K3						
CO4	Determine the strength and efficiency of the rivet and welded joints.	K3						
CO5	Design and explain some IC engine parts like the Connecting rod, crankshaft etc.	К3						

COs	PO1	PO2	PO3	PO4	PO5	PO5	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	3	2						2		2	2		
CO2	3	2	3	2						2		2	2		
CO3	3	2	3	2						2		2	2		
CO4	3	2	3	2						2		2	2		
CO5	3	2	3	2						2		2	2		

Department of Mechanical Engineering

CODE	COURSE NAME	HOUR	S PER W	VEEK	CIA	SEA	CREDIT
	b . Oth I.	L	T	P	40	60	2
MEUETT2	Dynamics Of Machinery	2	1	-	40	60	3

Course objectives:

- 1. Make students understand the fundamental knowledge of dynamics and the concept of a gyroscope.
- 2. Impart the knowledge of inertia forces and flywheels.
- 3. Enabling students to balance rotating and reciprocating masses in a mechanism.
- 4. To impart knowledge on various types of governors.
- 5. To Understand the fundamental concept of vibrations

	derstand the randamental concept of violations
UNIT – I	Gyroscope
	Gyroscope: Gyroscopic forces and couple (Torque), Angular velocity and acceleration
	of gyroscope, gyroscopic effect on naval ships, gyroscopic effect on aeroplane and
	vehicle moving on a curved path.
UNIT – II	Inertia force analysis
	Inertia force analysis: Effective force and inertia force of a link, D-Alembert's principle
	and dynamic equilibrium, equivalent offset inertia force, dynamically equivalent
	system, velocity and acceleration of piston, inertia forces in reciprocating engine,
	engine force analysis, inertia of connecting rod, Flywheels, turning moment diagram
	for single and multi-cylinder I.C. Engine, Co-efficient of fluctuation of speed, Co-
	efficient of fluctuation of energy.
UNIT – III	Balancing
	Balancing: Static and dynamic balancing, balancing of rotating masses and balancing
	of reciprocating masses, balancing of locomotives, the effect of partial balancing in the
	locomotive balancing of I.C. Engine, balancing of IN-line engine, balancing of V-
	engine, balancing of a radial engine, forward and reverse crank method
UNIT – IV	Governors
	Governors: Types of governors, centrifugal governor, spring-controlled governor, Watt,
	Porter and Proell, Hartnell, Hartung governor, governor effect, Power stability, Inertia
	effects. Governor Performance parameters.
UNIT -V	Vibration
	Vibration: One dimensional longitudinal, transverse, and torsional vibrations, natural
	frequency, effect of damping on vibrations, types of damping, different types of
	damping. Forced vibration, forces and displacement, transmissibility, vibration
	isolation, vibration sensors: seismometer and accelerometers Whirling of shafts with a
	single rotor.
	single rotor.

TEXTBOOKS:

- 1. Theory of Machines S. S. Ratan, McGraw Hill Education India
- 2. Theory of Machines -Thomas Beven, Pearson Publications
- 3. Theory of Mechanisms and Machines -Amitabh Ghosh and Ashok Kumar Mallik, East West Press
- 4. Theory of Machines and Mechanisms- John J. Uicker Jr., Gordon R. Pennock, and Joseph E. Shigley, McGraw Hill Education India
- 5. Mechanisms and Machines Theory-J.S. Rao & R.V. Dukkipati, Wiley Eastern Limited

REFERENCE BOOKS:

Theory of Machines-R. S. Khurmi, J. K. Gupta, S. Chand Publications.

Department of Mechanical Engineering

WEB RESOURCES:

https://archive.nptel.ac.in/courses/112/104/112104114/https://archive.nptel.ac.in/courses/112/101/112101096/

https://www.physics.wisc.edu/ingersollmuseum/exhibits/mechanics/gyroscope/

https://www.jntua.ac.in/gate-online-classes/registration/downloads/material/a159033048922.pdf

https://ramadossegsp.weebly.com/uploads/9/3/7/8/93786092/unit5-vvb.pdf

https://www.jntua.ac.in/gate-online-classes/registration/downloads/material/a159033051429.pdf

https://www.unife.it/ing/lm.meccanica/insegnamenti/meccanica-delle-vibrazioni/materiale-didattico/copy_of_a-a-2016-17-dispense-e-programma/03-rao_cap1-fundamentals-of-vibration.pdf

After	After completion of the course, the students will be able to						
COs	COs Statement						
CO1	Determine the gyroscopic effects	K3					
CO2	Evaluate a mechanism's inertia forces, the flywheel's dimension, and energy fluctuations.	К3					
CO3	Check the balancing of rotating & reciprocating masses of mechanisms	K3					
CO4	Calculate the speed, height, power, and effort of various types of governors.	К3					
CO5	Determine the type of vibration and calculate transmissibility, isolation, etc.	К3					

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1	1									1	1		
CO2	2	1	1									1	1		
CO3	2	1	1									1	1		
CO4	3	2	1									1	1		
CO5	3	2	1									1	1		

Department of Mechanical Engineering

CODE	COURSE NAME	HOUR	S PER W	/EEK	CIA	SEA	CREDIT	
		L	T	P				
MEUETT3	HEAT & MASS TRANSFER	3	-	-	40	60	3	

Course objectives:

- 1. To understand the basic modes of heat and mass transfer.
- 2. To understand and solve conduction, convection and radiation problems
- 3. To understand the concepts of heat transfer through extended surfaces.
- 4. To learn the thermal analysis and area requirement of heat exchangers.
- 5. To understand the basic concepts of phase change heat transfer (boiling/condensation).

1-D
on
&
nt

TEXTBOOKS:

- 1. Heat and Mass Transfer, Cengel, McGraw Hill
- 2. Heat & Mass Transfer, DS Kumar, Katsons
- 3. Heat Transfer, JP Holman, McGraw Hill
- 4. Heat Transfer, SP Sukhatme, Tata McGraw Hill
- 5. Heat & Mass Transfer, SC Sachadeva, EEE

REFERENCE BOOKS:

- 1. Fundamentals of heat and mass transfer.— Frank P. Incropera, David P. Dewitt, Wiley India Edition
- 2. Heat Transfer: A Basic Approach- M. Necati Ozisik

WEB RESOURCES:

https://archive.nptel.ac.in/courses/112/108/112108149/https://nptel.ac.in/courses/112101097

Guru Ghasidas Vishwavidyalaya Central University Department of Mechanical Engineering

After	After completion of the course, the students will be able to						
COs	Statement	Highest BTL					
CO1	Able to understand and solve steady state and transient heat conduction	K3					
	problems in simple geometries.						
CO2	Able to analyze the performance of heat exchangers.	K3					
CO3	Able to analyze the performance of extended surfaces.	K3					
CO4	Evaluate heat transfer coefficients for simple natural convection and	K3					
CO4	forced convection situations.						
CO5	Calculate the radiation heat exchange between surfaces (black and	K3					
COS	gray).						

		РО												PSO			
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PS O1	PS O2	PS O3		
CO1	3	2	1										2	1	1		
CO2	3	2	2										3	1	1		
соз	3	2	2										3	1	1		
CO4	3	2	1										2	1	1		
CO5	3	2	1										2	1	1		

Sub Code	L	T	Р	Duration	IA	ESE	Total	Credits
MEUETI1	1	0	0		100		100	1

Innovation and Design Thinking (One Credit Course)

Course Objectives:

- To understand the concept of innovation and its importance in today's business world
- To identify the different categories of innovation and their applications in various industries
- To develop the skills required for creative problem-solving and idea generation
- To apply design thinking techniques and tools to identify, define, and solve complex problems in various contexts

Course Content:

CONCEPT OF INNOVATION - Why Innovation is important for businesses, What is Innovation, Difference between Innovation and Invention, Types of Innovation, Product Innovation, Process Innovation, and Business Model Innovation (2)

SKILL & PERSONALITY TRAITS FOR INNOVATION -Personality traits for innovation, Organisational Structure for Innovation. (1)

SPECIAL CATEGORIES OF INNOVATIONS - Disruptive Innovation, Reverse Innovation. (2)

TOOLS FOR FOSTERING INNOVATION - Value Chain Analysis, The 3 Box Approach to Innovation, Focus Groups and other tools, Software tools for Innovation. (3)

DESIGN THINKING - Design Thinking Mindset, Process of Design Thinking, Idea generation, Understanding the current situation, What if - alternatives, Prototyping, Testing, Cases of application of Design Thinking. (4)

Design Thinking & Innovation Projects in Groups. (4)

Total - 15

References:

- 1. Govindarajan, Vijay. The Three-Box Solution, Harvard Business Review Press, 2016.
- 2. Brown, Tim. "Design Thinking." Harvard Business Review, vol. 86, no. 6, 2008,
- 3. Larson, Chris. "Disruptive Innovation Theory: What It Is & 4 Key Concepts." Harvard Business School Online, January 26, 2021, https://online.hbs.edu/blog/post/disruptive-innovation-theory.
- 4. Christensen, Clayton M. The Innovator's Dilemma: When New Technologies Cause Great Firms to Fail. Harvard Business Review Press, 1997
- 5. Soni, Pavan. Design Your Thinking: The Mindsets, Toolsets and Skill Sets for Creative Problem-solving. Notion Press, 2018

Course outcomes

CO1	Students will be able to define and explain the concept of innovation, its importance and role in modern businesses
CO2	Students will be able to identify and differentiate between various types of innovation and their applications in different industries
CO3	Students will be able to explain the principles and concepts of design thinking and apply them to real-world problems
CO4	Students will be able to develop creative and innovative solutions to complex problems, and evaluate the feasibility and potential impact of these solutions

Course Outcomes and their mapping with Programme Outcomes:

СО						1	PO						PSO			
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	1		3		2						2	1	2	1	3	
CO2	1		3		2						1	1	1	1	2	
CO3	1		3		1						2	1	1	1	2	
CO4	1		2		2						2	1	1	1	3	

Weightage: 1-Sightly; 2-Moderately; 3-Strongly

Proposed Evaluation system

Industry Integrated course / one credit courses will be evaluated by the course instructor / department faculty concerned and will carry a total of 100 marks for internal assessment such as assignments, seminars, quiz, projects, etc.

Course developed by

Alok K Tripathi, BE, MBA, PhD

General Manager, NTPC (Regional Learning Institute)

Maintenance Engineering and Management (ONE CREDIT COURSE)

Sub Code	L	T	P	Duration	IA	ESE	Total	Credits
MEUETI2	1	0	0		100		100	1

Course objectives:

- To understand the principles, functions and practices adapted in industry for the successful management of maintenance activities.
- To provide the concept of the Horizons of Maintenance Management and strategies used in industries.
- To impart the knowledge in Maintenance of Mechanical Equipments / Items used in Mining industries.
- To understand the conceptual description of Equipments, Methods & Mechanical Maintenance procedures.

1.0 Organization and Management of the Maintenance Function.

(3 HRS)

- 1.1. Redefining Maintenance- Delivery Reliability.
- 1.2.- Effective Maintenance Organization.
- 1.3.- Operating Policies of effective Maintenance.
- 1.4.- SixSigma Concept in Maintenance- Application of Quality Management Principles.

2.0 The Horizons of Maintenance Management

(5 HRS)

- 2.1.- Corrective Maintenance
- 2.2.- Reliability based Preventive Maintenance.
- 2.3.- Predictive Maintenance.
- 2.4.- Condition Monitoring based Maintenance.
- 2.5.- Computer based Maintenance Management System (CMMS).
- 2.6.- Total Productive Maintenance (TPM).

3.0 Maintenance of Mechanical Equipments / Items used in Mining (For indicative purpose).

(4 HRS)

- 3.1.- Bearings.
- 3.2.- Flexible Coupling for power transmission.
- 3.3.- Cranes: Overhead& Gantry.
- 3.4.- Lifting and Pulling device (Chain Pulley Block)
- 3.5.- Belt Drives.
- 3.6.- Mechanical Variable Speed Drives.
- 3.7.- Gear Drives and Speed Reducers.
- 3.8.- Pumps.
- 3.9.- Introduction to Underground Mining Machineries in operation in SECL- Side Discharge Loader / Load Haul Dumper/ Continuous Miner/ High Wall Mining Equipment / Long wall Mining

Equipments – Conceptual description of Equipments, Methods & Mechanical Maintenance procedures.

3.10.- Case Studies.

4.0 Tools of Maintenance Engineering

(3 HRS)

- 4.1.- Root Cause Analysis.
- 4.2.- Plant Maintenance Module in System Application Product (SAP) in ERP Platform.

After studying this course, the students are able to:

- CO1 Implement the principles, functions and practices adapted in industry for the successful management of maintenance activities.
- CO2 Evaluate the concept of the Horizons of Maintenance Management and strategies used in industries.
- CO3 Explain the knowledge in Maintenance of Mechanical Equipments / Items used in Mining industries.
- CO4 Analyze the conceptual description of Equipments, Methods & Mechanical Maintenance procedures.

Reference:

- 1. Maintenance Engineering and Maintenance by Sri R C Mishra & Sri K Pathak
- 2. Maintenance Engineering and Management by Sri D R Kiran
- 3. Computerized Maintenance Management system made easy by Sri Kishan Bagadia.
- 4. Modern ERP by Marianne Bradford.

Course Outcomes and their mapping with Programme Outcomes:

CO			•	•			PO	•					PSO			
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	2					1					2	2	2		1	
CO2	1	1				1					2	2	2			
CO3	1					1					1	2	2			
CO4	1					1					2	1	2		1	

Weightage: 1-Sightly; 2-Moderately; 3-Strongly

Evaluation system

Industry Integrated course / one credit courses will be evaluated by the course instructor / department faculty concerned and will carry a total of 100 marks for internal assessment such as assignments, seminars, quiz, projects, etc.

Course Prepared by

- 1. Sri A K Jha, GM(E&M)/HOD, SECL HQ, Bilaspur and
- 2. Sri Durgadas Adhikary, Chief Manager (E&M), SECL HQ, Bilaspur

Department of Mechanical Engineering

CODE	COURSE NAME	Н	OURS I		CIA	SEA	CREDIT
		L	Т	Р			
MEUETO1	Fundamentals of Thermodynamics	3	-	-	40	60	3

Course Objectives:

- To understand the basic laws of thermodynamics and heat transfer
- To understand the principle of operation of thermal systems like I C Engine, boilers, turbines, condensers etc.

UNIT-1 Introduction

Fundamental Concepts System, surrounding and universe, Concept of continuum, Property, State, Path, process, Cyclic process, Energy and its form, Work and heat, Enthalpy.

UNIT-2 Laws of Thermodynamics

Laws of thermodynamics: Concepts of Temperature, Zeroth law. First law of thermodynamics. Concept of processes, Flow processes and control volume, Flow work, Steady flow energy equation, Mechanical work in a steady flow of process

Second law: Essence of second law, Thermal reservoir, Heat engines, COP of heat pump and refrigerator. Statements of second law, Carnot cycle, Concept of Entropy.

UNIT-3 Thermal Power Plant

Thermal Power Plant Layout; Rankine Cycle, Major components of thermal power plant, Condensers, Cooling Towers.

UNIT-4 Power Producing Machines

Internal combustion engines, basic cycles; Turbines: Basic cycle of turbines, Impulse and Reaction Turbines.

UNIT-5 Power Consuming Machines

Pumps, compressors; Basic of refrigeration cycles, Environmental- friendly refrigerants, and Air conditioners.

TEXT BOOKS:

- 1 P.K. Nag, Engineering Thermodynamics, Tata McGraw-Hill, 6th Edition, 2022
- 2 Sonntag, Borgnakke, Van Wylen, Fundamentals of Thermodynamics, Wiley, 8thEdition,2012.
- 3 Y.A.Cengel and M.A.Boles, Thermodynamics: an Engineering Approach, McGraw Hill, 9th Edition, 2019

REFERENCE BOOKS:

1 Moran & Shapiro, Fundamentals of Engineering Thermodynamics, Willey, 8th Edition, 2014.

WEB RESOURCES

- 1 https://www2.engineering.com/Library/ArticlesPage/tabid/85/ArticleID/218/Thermodyna mics.aspx
- 2 https://open.umn.edu/opentextbooks/textbooks/1252
- 3 https://www2.engineering.com/Library/ArticlesPage/tabid/85/ArticleID/218/Thermodyna mics.aspx
- 4 https://onlinecourses.nptel.ac.in/noc23_me65/preview#:~:text=This%20course%20is%2 0on%20basic,pure%20substance%20and%20practical%20applications.

	e Outcomes (COs): completion of the course, the students will be able to											
CO1												
CO2	Describe the various laws of thermodynamics											
CO3	Describe the working principle of thermal power plants and the associated parts.											
CO4	Describe the various energy interactions between heat and work.											
CO5	CO5 Explain the various thermal machines based on thermodynamics.											

С							PO							PSO	
0	Р	Р	Р	Р	Р	Р	Р	Р	Р	РО	РО	РО	PS	PS	PS
U	01	02	O3	04	O5	O6	07	08	O9	10	11	12	01	O2	O3
C 01	3	2									2		3		
C O2	3	2									2		3		
C O3	3	2									2		3		
C O4	3	2									2		3		
C O5	3	2									2		3		

Department of Mechanical Engineering

CODE	COURSE NAME	HOU	RS PER	WEEK	CIA	SEA	CREDIT
A COLUMN TO A		L	T	P	20	20	
MEUELT1	Heat And Mass Transfer LAB			2	20	30	1

Course objectives:

- 1. To understand and identify various modes of heat transfer and their applications in various heat transfer equipment.
- 2. Apply the theoretical concepts to perform heat transfer analysis experimentally.

List of Experiments:

- 1. To find the thermal conductivity of insulating powder and metal rod.
- 2. To find the critical radius of insulating material.
- 3. To determine the overall and individual film heat transfer coefficient in finned tube heat exchanger.
- 4. Study and calculate the efficiency of fin in natural and forced convection.
- 5. To study about parallel flow and counter flow heat exchanger.
- 6. To find average surface heat transfer coefficient for a pipe and plot the surface temperature distribution along the length of pipe.
- 7. To study about emissivity measurement apparatus.
- 8. To study about the regenerative heat exchanger.
- 9. To determine total thermal resistance & thermal conductivity of composite wall.
- 10. To determine the overall & individual film heat transfer coefficient in 1:2 shell & tube heat exchanger.
- 11. To determine the thermal conductivity of lagging material.
- 12. To study about drop wise and film wise condensation.
- 13. To estimate the film heat transfer coefficient between the medium in which the body is heated.
- 14. To find the effectiveness of U-Tube finned heat exchanger.
- 15. To determine the overall & individual film heat transfer coefficient for the condensation of vapour on a vertical pipe.
- 16. To determine the Stefan Boltzmann constant.
- 17. To determine the surface heat transfer coefficient for a vertical tube losing heat by natural convection.
- 18. To determine the surface heat transfer coefficient for a vertical tube losing heat by forced convection.
- 19. To estimate the film heat transfer coefficient for axial and radial convection phenomenon.
- 20. To find the effectiveness of cross flow heat exchanger.

Name of the Equipment:

- 1. Heat transfer From Pin Fin
- 2. Parallel Flow & Counter Flow H.E.
- 3. Heat Transfer in Force Convection
- 4. Emissivity Apparatus
- 5. Regenerative Heat Exchanges
- 6. Vertical Condenser
- 7. Composite Wall Apparatus
- 8. Lagged Pipe Apparatus
- 9. Critical Radius of Insulating Material
- 10. Heat Conduction Apparatus
- 11. Heat Transfer through Natural Convection
- 12. Unsteady Heat Transfer
- 13. Stefan Boltzmann Apparatus
- 14. Drop wise &Filmwise Condensation
- 15. Thermal Conductivity of Insulating Powder
- 16. Thermal Conductivity of Metal Rod
- 17. Finned Tube Heat Exchanges
- 18. Shell & Tube Heat Exchangers
- 19. U-Tube Finned Heat Exchanges
- 20. Cross- Flow Hear Exchanges
- 21. Radiation Heat Transfer Apparatus

Department of Mechanical Engineering

TEXTBOOKS:

- 1. Heat and Mass Transfer, Cengel, McGraw Hill
- 2. Heat & Mass Transfer, DS Kumar, Katsons
- 3. Heat Transfer, JP Holman, McGraw Hill
- 4. Heat Transfer, SP Sukhatme, Tata McGraw Hill
- 5. Heat & Mass Transfer, SC Sachadeva, EEE

REFERENCE BOOKS:

Fundamentals of heat and mass transfer. - Frank P. Incropera, David P. Dewitt, Wiley India Edition

WEB RESOURCES

https://www.iitk.ac.in/me/heat-transfer-laboratory

 $\frac{https://iitr.ac.in/Departments/Mechanical\%20and\%20Industrial\%20Engineering\%20Department/Research/Heat\%20Transfer%20Laboratory.html \\$

https://vlab.amrita.edu/index.php?sub=1&brch=194

After c	ompletion of the course, the students will be able to	
COs	Statement	Highest BTL
CO1	Investigate experimentally the thermal conductivity of insulating material, lagged pipe and metal rod.	К3
CO2	Conduct the transient heat conduction experiment and obtain variation of temperature with time of the spherical and cylindrical objects.	К3
СОЗ	Obtain the value of convective heat transfer coefficients in forced convection and natural convection experiments.	К3
CO4	Able to obtain radiation properties such as emissivity of a test plane and Stefan-Boltzmann's constant experimentally.	К3
CO5	Understand the phenomenon of boiling and condensation.	K3
CO6	Estimate the effectiveness of different types of heat exchangers.	K3
CO7	Estimate the effectiveness of pin fin under natural and forced convection situations.	K3
CO8	Perform critical radius of insulation of a lagged pipe.	K3

СО							РО							PSO	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1							1				2	1	
CO2	3	1							1				2	1	
CO3	3	2	2	1					1				2	1	1
CO4	3	2	1						1				2	1	
CO5	3	1							1				2	1	
CO6	3	2	2	1					1				2	1	1
CO7	3	2	2	1					1				2	1	1
CO8	3	1							1				2	1	

Department of Mechanical Engineering

CODE	COURSE NAME	Н	OURS I		CIA	SEA	CREDIT	
		L	Т	Р				
MEUDPV1	Mini Project – II	-	-	3	30	20	2	

Course Objectives:

- 1 Learn to enumerate considerations for designing a component/model/product/service
- 2 Fabrication of model/component/product
- 3 Prepare bill of materials
- 4 Carry out economic analyses

Procedure for allocation of Research topic:

- 1. A group of students shall be allocated one Project supervisor from among the faculty members
- 2. The model building or fabrication is largely based on Do-It-Yourself mode of learning.
- 3. The group shall complete fabrication of the model/component as part of the miniproject work.

WEB	VEB RESOURCES									
1	https://www.youtube.com/c/PracticalEngineeringChannel									
2	https://www.youtube.com/user/EngineeringExplained									
3	https://www.instructables.com/workshop/projects/									
4	https://hackaday.com/tag/diy-projects/									
5	https://engineering.stackexchange.com/									
6	https://www.opensourceecology.org/									
7	https://grabcad.com/									

Course	Outcomes (COs): After the course completion, student shall be able to
CO1	List out design considerations in making a model/component/service/product
CO2	Demonstrate ability to fabricate model/component
CO3	Evaluate cost and economic analyses

_					PSO										
0	Р	Р	Р	Р	Р	Р	Р	Р	Р	PO	РО	РО	PS	PS	PS
	01	02	O3	04	O5	O6	07	08	O9	10	11	12	O1	O2	O3
С	2	2							2	2		2	2		
O1															
С	2	2							2	2		2	2		
O2															
С	1	1							2	2		1	2		
O3															

Department of Mechanical Engineering

CODE	COURSE NAME	HOUR	S PER V	VEEK	CIA	SEA	CREDIT
MEUELT2	TOMAAD	L	T	P			
	TOM LAB			2			

Course objectives:

- 1. Impart knowledge on inversions of four bar, single slider and double slider chain.
- 2. To demonstrate working of Cam and followers and plot displacement v/s angle of rotation curves.
- 3. Make students understand various types of governors.
- 4. To impart knowledge on various epicyclic gear trains and Coriolis acceleration components.
- 5. Make students understand the practical vs. theoretical torque relation of the gyroscope and its applications.
- 6. Demonstrate the static and dynamic balancing, whirling of the shaft, and vibration.

S.No.	Title of Experiments
1	Study of Four-bar chain, single slider chain, Double slider chain, and their inversions.
2	Study of various types of cams and follower pairs; Find the angular displacement of the cam follower pair. Study of the spring compression effect on bounce.
3	Study the watt Governor to calculate the governor's height, and perform the test.
4	Study the effect of varying the mass of the central sleeve of Porter and Proell Governor and perform the test.
5	Study the effect of initial spring compression of Hartnell Governor and perform the test.
6	Determine the Coriolis acceleration component at various rotation speeds and water flow rates.
7	Study of Epicyclic gear train apparatus and; (a) Measure the Epicyclic Gear Ratio (b) Measure input, holding, and output torque.
8	Study of Motorized Gyroscopic Apparatus and determine the Gyroscopic.
9	Study and perform the Static and Dynamic Balancing of shafts.
10	Study the Whirling phenomenon, Measure the natural frequency of the steel shaft and compare the measured natural frequency with the theoretical one.
11	Verify the relation of simple and compound pendulums by Universal Vibration apparatus.

Name of the Equipment:

- 1. Universal Vibration Apparatus
- 2. Cam Analysis Apparatus
- 3. Whirling of shaft Apparatus
- 4. Static & dynamic balancing demonstrator
- 5. Motorized gyroscope
- 6. Journal bearing Apparatus
- 7. Coriolis's Components of Acceleration Apparatus
- 8. Epicyclic Gear Train Apparatus
- 9. Universal Governor Apparatus
- 10. Slip and Creep Measurement Apparatus

Department of Mechanical Engineering

- 11. Four-bar link Mechanism
- 12. Reciprocating Engine Mechanism
- 13. Whit Worth's Quick Return Mechanism
- 14. Epicycle Gear Train Apparatus

TEXTBOOKS:

- 1. Theory of Machines S. S. Ratan, McGraw Hill Education India
- 2. Theory of Machines -Thomas Beven, Pearson Publications
- 3. Theory of Mechanisms and Machines -Amitabh Ghosh and Ashok Kumar Mallik, East West Press
- 4. Theory of Machines and Mechanisms- John J. Uicker Jr., Gordon R. Pennock, and Joseph E. Shigley, McGraw Hill Education India
- 5. Mechanisms and Machines Theory-J.S. Rao & R.V. Dukkipati, Wiley Eastern Limited

REFERENCE BOOKS:

Theory of Machines-R. S. Khurmi, J. K. Gupta, S. Chand Publications.

WEB RESOURCES

https://mm-nitk.vlabs.ac.in/

https://www.vlab.co.in/broad-area-mechanical-engineering

http://vlabs.iitkgp.ac.in/kdm/

https://www.mathworks.com/matlabcentral/fileexchange/123370-mechanisms-and-machines-virtual-lab

After	After completion of the course, the students will be able to										
COs	Statement	Highest BTL									
CO1	Find inversions of four bar, single slider and double slider chain.	K3									
CO2	Demonstrate cam and followers' experiment and plot displacement v/s angle of the rotation curve.	К3									
CO3	Calculate height and speed for various types of governors.	K3									
CO4	Calculate the gear ratio and Coriolis acceleration component.	K3									
CO5	Determine the gyroscopic couple, static and dynamic balancing, vibration	К3									

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2								3			1	1		
CO2	3								3			1	1		
CO3	3								3			1	1		
CO4	3								3			1	1		
CO5	3								3			1	1		

Department of Mechanical Engineering

CODE	COURSE NAME	HOUR	S PER W	VEEK	CIA	SEA	CREDIT
MEUELT3	MODELLING AND	L	T	P	20	20	2
	SIMULATION-I LAB	1	-	2	20	30	

Course objectives:

- 1. To learn the basic features of part modelling.
- 2. To learn basic features, methods and metrics of mesh generation
- 3. To perform analysis of simple systems in mechanical engineering domain

S.No.	List of Laboratory activities
1	Concept of planes and sketches – how to create planes and sketches
2	Solid from Sketches, Using primitives
3	Design Modeler concepts – Using Frozen, Hidden, Suppressed, Active
4	Meshing – Simple geometries, features
5	Meshing – Complex geometries
6	Advanced Meshing features
7	Static Structural analysis
8	Vibration analysis
9	Fluid flow analysis in pipes and ducts
10	Steady state thermal analysis
11	Conjugate heat transfer
12	Modelling and simulation of manufacturing processes, etc.

REFERENCE BOOKS:

- 1. ANSYS DESIGN MODELER Theory Manual
- 2. ANSYS DESIGN MODELER Tutorials

WEB RESOURCES

YouTube videos

After	After completion of the course, the students will be able to										
COs	Statement	Highest BTL									
CO1	Use basic modelling features in creating a solid model	K3									
CO2	Understand mesh metrics and develop suitable mesh	K3									
CO3	Apply suitable components for analysis of mechanical systems	K3									

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	1	-	3				3	3		3	3	3	3
CO2	1	1	1	2	3				3	3		3	3	3	3
CO3	3	3	3	2	3				3	3		3	3	3	3

SCHOOL OF STUDIES OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF MECHANICAL ENGINEERING

Scheme of Teaching and Evaluation 2024-25 (As per NEP-2020) Choice Based Credit System (CBCS) and Outcome Based Education (OBE) (Effective from the Academic year 2024-25)

	VI-SEN	MESTER SCH	EME OF TEACHING & EVA	LUA	rion	N 202	4-25				
				Teach Hours				Exa	minati	on	
S. N.	Course Type	Course Code	Course Title	Theory	Tutorial	Practica I/Drawi	Examinatio n in Hours	CIA Marks	SEA Marks	Total Marks	Credits
				L	T	P	Exan n in	CIA	SEA	Tota	
1	Department Core	MEUFTT1	Machine Design – II	3	1	-		40	60	100	4
2	Department Core	MEUFTT2	Finite Element Analysis	3	ı	-		40	60	100	3
3		MEUFTP1	Machine Tool Technology	3	1	-		40	60	100	3
	Department elective	MEUFTP2	Product Design & Development								
		MEUFTP3	Material Characterization								
4		MEUFTI1	Metal Cutting	1	1	-		100		100	1
	Industry Course	MEUFTI2	Environment Friendly Power Generation from Coal								
5	Open Elective	MEUFTO1	Fundamentals of Fluid Mechanics*		1	-		40	60	100	3
6	Project	MEUFPV1	Mini Project			3		20	30	50	2
7	Practical	MEUFLT1	MTT Lab	-	-	2		20	30	50	1
8	Practical	MEUFLT2	Modeling and Simulation – II Lab	-	-	2		20	30	50	1
		Total		10	1	7		320	330	650	18
*	Not for ME students			10	1			320	330	030	10

Credit Definition:

- >>1-hour lecture (L) per week per semester = 1 Credit
- >> 1-hour tutorial (T) per week per semester = 1 Credit
- >>2-hour Practical/Drawing(P) per week per semester = 1 Credit
- ➤ Four credit courses are to be designed for 50 hours of Teaching-Learning process.
- > Three credit courses are to be designed for 40 hours of Teaching-Learning process.
- ➤ Two credit courses are to be designed for 30 hours of Teaching-Learning process.
- ➤ One credit courses are to be designed for 15 hours of Teaching-Learning process

Note: The above is applicable only to THEORY courses

CIA: Two internal Class Tests, each of 15 Marks.

Assignment: 10 Marks

SEA: Semester End Assessment – 60 marks

Department of Mechanical Engineering

CODE	COURSE NAME	HOUR	S PER W	VEEK	CIA	SEA	CREDIT
MEUFTT1	MA CHINE DEGICN. H	L	T	P	40	60	4
	MACHINE DESIGN - II	3	1	-	40		

Course objectives:

- 1. Make students understand the types of springs and designs based on load.
- 2. Impart the knowledge of gear terminology and use the design data to calculate gear parameters.
- 3. Enabling students to use the design catalogue to select suitable bearings.
- 4. To impart knowledge on various types of belt drive and brakes.

	T
UNIT – I	Spring Design
	Springs: Spring Materials and Their Mechanical Properties, Equation for Stress and
	Deflection, Helical Coil Springs of Circular Section for Tension, Compression and
	Torsion, Dynamic Loading, Fatigue Loading, Wahl Line, Leaf Spring and Laminated
	Spring.
UNIT – II	Gear Design
	Gears: Spur Gears, Gear Drives, Classification of Gears, Selection of Type of Gears,
	Law of Gearing, Force Analysis, Gear Tooth Failures, Selection of Material, Number
	of Teeth, Face Width, Beam Strength of Gear Tooth, Effective Load on Gear Tooth,
	Estimation of Module, Gear Design for Maximum Power Transmitting Capacity.
	Helical Gears, Terminology of Helical Gears, Virtual Number of Teeth, Tooth
	Proportions, Force Analysis, Beam Strength of Helical Gears, Effective Load on Gear
	Tooth, Wear Strength of Helical Gears.
	Bevel Gears, Terminology of Bevel Gears, Force Analysis, Beam Strength of Bevel
	Gears, Wear Strength of Bevel Gears, Effective Load on Gear Tooth.
UNIT – III	Bearings
	Rolling Contact Bearings, Types of Ball and Roller Bearings, Selection of Bearing for
	Radial and Axial Load, Bearing Life, Mounting and Lubrication.
	Journal Bearing - Contact Type and Clearance Type. Journal Bearings: Types of
	Lubrication, Viscosity, Hydrodynamic Theory of Lubrication, Sommerfeld Number,
	Heat Balance, Self-contained Bearings, Bearing Materials
UNIT – IV	Belt and Rope Drives
	Belt Drive: Flat and V-belts, Belt Constructions, Geometrical Relationships for Length
	of the Belt, Analysis of Belt Tensions, and Condition for Maximum Power, Selection
	of Flat & V-Belts, and Adjustment of Belt Tensions. Pulleys for Flat & V-belts, Wire
	rope and stress in wire ropes.
UNIT -V	Gear Boxes
	Geometric progression- Standard step ratio- Ray diagram, kinematics layout Design of
	sliding mesh gear box- Design of multi-speed gear box for machine tool applications-
	Constant mesh gear box- Speed reducer, Variable speed gear box.

TEXTBOOKS:

- 1. Machine Design- J. E. Shigley -McGraw Hill Publications.
- 2. Design of Machine Elements V. B. Bhandari, TMH Publications.
- 3. Machine Design, Spott, TMH Publications.
- 4. PSG Design Data Book PSG College, Coimbatore.
- 5. Principles of Mechanical Design, R. Phelan, McGraw Hill Pub

Department of Mechanical Engineering

REFERENCE BOOKS:

1. Machine Design – R. S. Khurmi, Chand Publications.

WEB RESOURCES:

https://www.tokaibane.com/en/spring-design/compression-springs-formulas https://www.cedengineering.com/userfiles/Introduction%20to%20Gear%20Design-R1.pdf https://edurev.in/t/85326/Chapter-5-V-Belt-And-Rope-Drives-Machine-Design--M https://cybra.lodz.pl/Content/3714/DesignBasicInd.pdf

After	After completion of the course, the students will be able to						
COs	Statement	Highest BTL					
CO1	Design Coil and leaf springs for specific load applications	K3					
CO2	Determine the Gear Parameters for static load conditions	K3					
CO3	Select the bearings from the catalogue based on design parameters	K3					
CO4	Calculate the design parameters of various types of belts and rope drives.	K3					
CO5	Design of Gear Boxes for variable speed applications	K3					

COs	PO1	PO2	PO3	PO4	PO5	PO5	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	3	2						2		2	2		
CO2	3	2	3	2						2		2	2		
CO3	3	2	3	2						2		2	2		
CO4	3	2	3	2						2		2	2		
CO5	3	2	3	2						2		2	2		

Department of Mechanical Engineering

CODE	COURSE NAME	HOURS PER WEEK			CIA	SEA	CREDIT
MEUFTT2	FINITE ELEMENT	L	T	P	40	60	
	ANALYSIS	3	-	-	40		3

Course objectives:

- 1. Learn fundamental philosophy of domain discretization and formulation techniques
- 2. One- and two-dimensional analysis using FE concepts
- 3. Numerical integration for 2D and 3D elements
- 4. Learn basics of dynamic analysis using FEM

UNIT – I	Introduction to FEM
OIVII - I	Equilibrium of continuum-Differential formulation, Energy Approach-Integral
	formulation, Variational formulation. Overview of approximate methods for the
	solution of the mathematical models: Rayleigh-Ritz methods, Methods of Weighted
	Residuals
UNIT – II	One-dimensional analysis – Spring and bar element
OWII - II	Modelling and discretization, Shape functions, elements and Degrees-of-Freedom,
	Strain – displacement relation, Local and Global equations, Applications of FEA. Iso-
	Sub-Super parametric formulations. Natural Coordinate systems and Shape functions:
	Basic concept of natural coordinate.
	1D Elements Structural Problems: Linear and Quadratic elements, Elimination and
	Penalty Approach, Properties of global stiffness matrix. 1D thermal conduction and
	fluid flow problems.
UNIT – III	One-dimensional analysis – Beams and Frames
	Formulation of Truss element – coordinate transformation, Plane truss. Beam:
	Elementary beam theory, Beam Element formulation, plane frames, various loading
	and boundary conditions.
	1-D natural coordinate, Shape functions in natural coordinate system, Convergence
	requirements, Compatibility and completeness
UNIT – IV	Two-dimensional analysis
	2-D natural coordinate, Concept of shape functions, Shape function for plain elements,
	Shape functions using Lagrange polynomials. Shape functions for serendipity family
	elements
	Gauss Quadrature formula, Gauss Quadrature in two and three dimensions. Plane stress
	and plane strain matrices. Triangular (CST, LST) and Rectangular (Q4, Q8) Elements:
	Shape function, Jacobian matrix, strain-displacement matrix, stress-strain relationship
	matrix, force vector, Limitations of elements.
UNIT -V	Plates and Shells
	Introduction, thin and thick plates: Kirchoff theory, Mindlin plate element, conforming
	and nonconforming elements, degenerated shell elements, reduced and selective
	integration, shear locking and hour glass phenomenon.
	Formulation of dynamic problems, consistent and lumped mass matrices, Solution of
	eigenvalue problems: Transformation methods Jacobi method, Vector Iteration
	methods, subspace iteration method.
1	

TEXTBOOKS:

- 1. Text book of Finite Element Analysis, Seshu P., PHI.
- 2. Fundamentals of Finite element Analysis, David V. Hutton, McGraw Hill

Department of Mechanical Engineering

REFERENCE BOOKS:

- 1. A First Course in the Finite Element Method, Daryl L. Logan, Thompson Learning.
- 2. Concepts and Applications of Finite Element Analysis, R D Cook, D S Malkus, M E Plesha, and R J Witt, Wiley.
- 3. Introduction to Finite Elements in Engineering, Chandrupatla T. R. and Belegunda A. D., PHI.
- 4. Finite element Method in Engineering, S S Rao, Elsevier.
- 5. The Finite Element Method A Practical Course, Liu G. R. and Quek S. S., Butterworth Heinemann.

WEB RESOURCES:

- 1. NPTEL courses
- 2. Coursera

After	After completion of the course, the students will be able to						
COs	Statement	Highest BTL					
CO1	Understand the basic FE formulations techniques	К3					
CO2	Solve elementary problems with 1D elements	K4					
CO3	Apply FE techniques to solve 1D beam and plane frame problems	K4					
CO4	Formulate FE solution using 2D elements	K3					
CO5	Understand application of FE techniques to simple plate and shell problems	К3					

COs	PO1	PO2	PO3	PO4	PO5	PO5	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	1									3	1	
CO2	3	3	2	1									3	1	
CO3	3	3	2	1									3	1	
CO4	3	3	2	1									3	1	
CO5	3	3	2	1									3	1	

Department of Mechanical Engineering

CODE	COURSE NAME	HOURS PER WEEK			CIA	SEA	CREDIT
MEUFTP1	M 1: T 1T 1	L	T	P	40	60	
	Machine Tool Technology	3	-	-	40		3

Course objectives:

- 1. Impart knowledge and principles in material removal processes.
- 2. apply the fundamentals and principles of metal cutting to practical applications using lathes, milling machines, grinding machines, and drill presses, Computer Numerical Control etc
- 3. To demonstrate the fundamentals of machining processes and machine tools.
- 4. To develop fundamental knowledge on tool materials, cutting fluids and tool wear mechanisms
- 5. To apply knowledge of basic mathematics to calculate the machining parameters for different machining processes.
- 6. Understand the computer controlled manufacturing such as CNC, NC, DNC, CAM & Robotics.

Ro	botics.
UNIT – I	Theory of Metal Cutting
	Introduction: Metal Removal Processes, Theory Of Metal Cutting: Chip Formation,
	Orthogonal Cutting- Oblique Cutting- Machinability of metal. Cutting Tool-
	Classification of cutting tools-Single point Cutting Tool Geometry-Cutting Tool
	Materials, Tool Wear, Tool Life, and Cutting Fluids-Functions and properties.
UNIT – II	Lathe and Operations
	Centre Lathe-Construction- Various Operations, Taper Turning Methods, Thread
	Cutting operation, Lathe Attachments & Accessories.
UNIT – III	Reciprocating Machine Tools
	Shaper -Principal parts, Classification, Specification of shaper, Shaper Mechanisms,
	Types- Hydraulic shaper. Cutting Speed, Feed, Depth of cut & machining time-Various
	shaper operations-Introduction to Planer -Principal parts and working of Double
	housing Planer, Principal parts of Slotter-Working of slotter
UNIT – IV	Drilling and Milling Machines
	Drilling operations- Twist drill geometry –Radial drilling machine-Jigs and Fixtures-
	Definition-Need of Jigs and Fixtures Drill Jig-Locating devicesMilling-
	Classification, Column and knee type milling machine - Milling cutters and
	classification-Fundamentals of milling processes-Milling operations
UNIT -V	Super Finishing Processes
	Abrasive Processes- Grinding Wheel - Specifications And Selection, Types Of
	Grinding Process - Cylindrical Grinding, Surface Grinding, Centre less Grinding-
	Super finishing process- Honing, Lapping, Super Finishing, Polishing And Buffing
	Batch production: NC Part programming. CNC machines, Finishing: Micro finishing,
	Introduction to 3D and 4D printing, Rapid prototyping

TEXTBOOKS:

- 1. Rao, P.N., *Manufacturing Technology, Vol I & II*, Tata Mcgraw Hill Publishing Co., New Delhi, 1998
- 2. Sharma, P.C., *A Textbook Of Production Technology Vol I And II*, S. Chand & Company Ltd., New Delhi, 1996

Department of Mechanical Engineering

REFERENCE BOOKS:

- 1. Manufacturing science By A. Ghosh& A.K. Mallik East West Press Pvt. Ltd New Delhi
- 2. Manufacturing Process by O P Khanna Dhanpat Rai Publication
- 3. Manufacturing Engg. And technology by S. Kalpakjian& S.R. Schmid, Addision Wesley Longman, New Delhi

WEB RESOURCES:

https://www.youtube.com/watch?v=JSWxaFQQm3g https://www.youtube.com/watch?v=galm5_6SUcM https://www.youtube.com/watch?v=McF7OULzspg https://www.youtube.com/watch?v=hah8-30Ecz8

COs	Statement
CO1	Understand the cutting tool geometry, mechanism of chip formation and mechanics
	of orthogonal cutting
CO2	Identify basic parts and operations of machine tools including lathe, shaper, planer,
CO2	drilling, boring, milling and grinding machine.
CO3	perform locating and clamping devices to produce a component.
CO4	Select a machining operation and corresponding machine tool for a specific
CO4	application in real time.
CO5	Understanding the computer controlled manufacturing such as CNC, NC, DNC, CAM
103	& Robotics.

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1	1									1	1		
CO2	2	1	1									1	1		
CO3	2	1	1									1	1		
CO4	3	2	1									1	1		
CO5	3	2	1									1	1		

Department of Mechanical Engineering

CODE	COURSE NAME	HOURS PER WEEK			CIA	SEA	CREDIT
MEUFTP2	PRODUCT DESIGN AND	L	T	P	40	60	3
	DEVELOPMENT	3		-	40		

Course objectives:

- 1. Make students understand the common features of a Product.
- 2. Impart the knowledge of Engineering Design in product development.
- 3. Enabling students to forecast the product development process.
- 4. To impart knowledge on various product architecture.

UNIT – I	Introduction						
	Need for IPPD – New Product design (NPD) – NPD Process- Product Life Cycle (PLC)						
	- Product design: Concepts and steps- Product Analysis - Generic Product						
	Development process- Identifying the Customer needs Process - Plan and establishing						
	product specifications – structured approach.						
UNIT – II	Concept generation, Concept selection and Testing						
	Task – Structured approaches – clarification – search – externally and internally –						
	explore systematically – reflect on the solutions and processes – concept selection –						
	methodology – benefits – Concept Testing Process.						
UNIT – III	Product architecture						
	Implications – Product change – variety – component standardization – product						
	performance – manufacturability – product development management – establishing						
	the architecture – creation – clustering – geometric layout development – fundamental						
	and incidental interactions – related system-level design issues – secondary systems –						
	architecture of the chunks – creating detailed interface specifications.						
UNIT – IV	Industrial Design						
	Integrate process design -Robust design - Integrating CAE, CAD, CAM tools -						
	Ergonomics in Product design- Need for industrial design – impact – design process –						
	investigation of for industrial design - impact - design process - investigation of						
	customer needs - conceptualization - refinement - management of the industrial						
	design process - technology-driven products -user-driven products - assessing the						
	quality of industrial design.						
UNIT -V	Design for Manufacturing and Product Development						
	Design for Manufacturing: Definition – Estimation of Manufacturing cost – reducing						
	the component costs and assembly costs – Minimizing system complexity. – Design						
	for Assembly - Guidelines - DFMA Guidelines Design guidelines for the different						
	processes: Casting, machining, Injection moulding, welding Prototype basics -						
	principles of prototyping – planning for prototypes.						

TEXTBOOKS:

1. Karl T. Ulrich and Steven D. Eppinger, "Product Design and Development", McGraw-Hill International – 7th Edition - 2020.

REFERENCE BOOKS:

- 1. Kemnneth Crow, "Concurrent Engg./Integrated Product Development", DRM Associates, 26/3, Via Olivera, Palos Verdes, CA 90274(310) 377-569, Workshop Book.
- 2. Stephen Rosenthal, "Effective Product Design and Development", Business One Orwin, Homewood, 1992, ISBN 1-55623-603-4.

Department of Mechanical Engineering

3. Staurt Pugh, "Tool Design –Integrated Methods for Successful Product Engineering", Addison Wesley Publishing, New York, NY.

WEB RESOURCES:

https://www.centennialcollege.ca/programs-courses/full-time/product-design-and-development/https://ocw.mit.edu/courses/15-783j-product-design-and-development-spring-2006/https://www.productplan.com/glossary/product-design/

https://www.designingbuildings.co.uk/wiki/Design for Manufacture and Assembly (DfMA)

After	After completion of the course, the students will be able to								
COs	Statement	Highest BTL							
CO1	Associate all the stakeholders for effective NPD in an organization	K3							
CO2	Predict the feasible concept for product development	K2							
CO3	Explain the various processes involved in product architecture	K2							
CO4	Defend the significance of the Industrial Design process in product development.	К3							
CO5	Discuss the cost involved in project execution and product-making.	K3							

COs	PO1	PO2	PO3	PO4	PO5	PO5	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	3	2						2		2	2		
CO2	3	2	3	2								2	2		
CO3	3	2	3	2						2		2	2		
CO4	3	2	3	2			2	2			2	2	2		
CO5	3	2	3	2						2	2	2	2		

Department of Mechanical Engineering

CODE	COURSE NAME	HOUR	S PER W	VEEK	CIA	SEA	CREDIT
	MATERIALS	L	T	P			
MEUFTP3	CHARACTERIZATION TECHNIQUES	3	-	-	40	60	3

Course objectives:

- 1. To classify materials characterization techniques
- 2. To understand the principles and operation of different characterization tools
- 3. Explain the operation variables on the formation of quality images/results
- 4. Select suitable characterization tools based on the need of the analysis

UNIT – I	Optical Microscopy								
	Fundamentals of optics, Optical microscope and its instrumental details, Variants in								
	optical microscopes and image formation, Phase contrast, Polarized light, Sample								
	preparation and applications of optical microscopes.								
UNIT – II	Electron Microscopy								
	Scanning Electron Microscopy (SEM) - Introduction, Instrumentation, Contrast								
	formation, Operational variables, Specimen preparation, imaging modes,								
	Applications, Limitations.								
	Transmission Electron Microscopy (TEM) - Introduction, Instrumentation,								
	Specimen preparation-pre thinning, final thinning, Image modes- mass density								
	contrast, diffraction contrast, phase contrast, Applications, Limitations.								
UNIT – III	X-ray diffraction								
	X-ray diffraction: Fundamentals of X-ray generation and scattering, properties and								
	applications of X-rays, absorption of X-rays and filters, Bragg's law, X-Ray diffraction								
	and applications, working principles of diffractometer, diffraction methods, diffraction								
	intensities, factors affecting intensity, 'structure factor' calculations, Indexing of XRD								
	patterns.								
UNIT – IV	Thermal Characterizations								
	Thermal Analysis - Introduction, Common characteristics- Instrumentation,								
	experimental parameters, Different types used for analysis, Thermo-gravimetry,								
	Differential Scanning Calorimetry, Differential Thermal Analysis, Dynamic								
	Mechanical Analysis.								
UNIT -V	Magnetic Characterizations								
	Magnetic characterization techniques - Introduction to Magnetism, Measurement								
	Methods, Measuring Magnetization by Force, Measuring Magnetization by Induction								
	method, Types of measurements using magnetometers: M-H loop, temperature								
	dependent magnetization, time dependent magnetization.								

Text/ Reference Books:

- 1. Characterization of Materials (Materials Science and Technology: A Comprehensive Treatment, Vol 2A & 2B, VCH (1992).
- 2. Semiconductor Material and Device Characterization, 3rd Edition, D.K. Schroder, Wiley-IEEE Press (2006).
- 3. Materials Characterization Techniques, S Zhang, L. Li and Ashok Kumar, CRC Press (2008).
- 4. Physical methods for Materials Characterization, P.E. J. Flewitt and R K Wild, IOP Publishing (2003).
- 5. Characterization of Nanophase materials, Ed. Z L Wang, Willet-VCH (2000).
- 6. Thermal Analysis of Materials, Robert F. Speyer, Marcel Dekker Inc., New York, 1994.

Department of Mechanical Engineering

- 7. David B. Williams, C. Barry Carter, Transmission Electron Microscopy, Springer 2009. 8. Cullity B. D., 'Elements of X-ray Diffraction', 4th Edition, Addison Wiley, 1978.

Course Outcome and their mapping with Program Outcomes:

After completion of the course, the students will be able to:

COs	Course Outcomes	Bloom's Taxonomy
CO1	Study the principles and methods of analyzing the optical structure of materials	Understand
CO2	Understand the working and analysis of the images of electron microscopy	Understand
CO3	Determine crystal structure, lattice parameter, phase identification, and residual stress analysis using XRD	Evaluate
CO4	Analyze the specimen by thermal analysis to study high temperature behavior of materials	Analyze
CO5	Analyze the magnetic behavior of materials	Analyze

						-	POs						PSOs		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	3	2	-	1	-	-	ı	-	•	3	2	-
CO2	3	3	2	3	2	-	ı	-	-	ı	-	-	3	2	-
CO3	3	3	2	3	2	-	1	-	-	ı	-	•	3	2	-
CO4	3	3	2	3	2	-	-	-	-	-	-	-	3	2	-
CO5	3	3	2	3	2	-	-	-	-	-	-	-	3	2	-
Avg.	3	3	2	3	2	-	-	-	-	-	-	-	3	2	-

Sub Code	L	T	P	Duration	IA	ESE	Total	Credits
MEUFTI1	1	0	0		100		100	1

Metal Cutting (One Credit Course)

Course Objectives:

- To provide students with a comprehensive understanding of the principles and techniques of metal cutting
- To develop students' proficiency in using various metal cutting tools and machines
- To enhance students' ability to interpret engineering drawings and select appropriate metal cutting methods for specific applications
- To cultivate students' problem-solving skills in analyzing and resolving issues related to metal cutting processes

Course Content

Basics of Metal Cutting - Various operations - Concepts of stationary and rotary tools 3hrs

Cutting tool evolution – Cutting tool materials – Latest trends in the cutting tools – Grades and Geometries – Coating processes of cutting tools 6 hrs

Workpiece materials – Properties- Cutting tool selection – Machining Concepts – High Speed Machining – Cutting fluids – Wet and Dry Machining 3 hrs

Machine tools – Turning lathe – VMC – HMC – Twin mill centre – Clamping systems – Fixtures 3 hrs

Course Outcomes

- CO1 Students will be able to explain the fundamental concepts and theories related to metal cutting, including the mechanics of chip formation, tool wear, and cutting forces
- CO2 Students will demonstrate competence in operating and setting up different types of metal cutting machines, such as lathes, milling machines, and bandsaws.
- CO3 Students will be able to interpret engineering drawings and select appropriate cutting tools, speeds, and feeds for specific machining operations
- CO4 Students will develop the ability to analyze and troubleshoot common problems in metal cutting processes, such as chatter, surface roughness, and dimensional inaccuracies

References:

- 1. Fundamentals of Metal Cutting and Machine Tools, B.L.Juneja, G.S.Sekhon and Nitin Seth, 2nd edition, New Age International (P) Ltd, 2005.
- 2. Metal cutting & Tool Design By Ashok Kumar Singh, 1st edition, Vayu Education of India; First Edition, 2014.
- 3. Metal cutting Theory & Practice, Stephenson, David A.; Agapiou, John S, CRC press, 1997.
- 4. Machining & Machine Tools, AB Chattopadhyay, Wiley; Second edition, 2017
- 5. CNC Machines & Automation, Khusdeep Ghoyal, S.K. Kataria & Sons; 2014.

Course Outcomes and their mapping with Programme Outcomes:

СО							PO						PSO		
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2		1			2					1		1	1	
CO2	3		2		1	1							1		2
CO3	3	2				1	1							2	1
CO4	1	1		1		2	1						1	1	

Weightage: 1-Sightly; 2-Moderately; 3-Strongly

Proposed Evaluation system

Industry Integrated course / one credit courses will be evaluated by the course instructor / department faculty concerned and will carry a total of 100 marks for internal assessment such as assignments, seminars, quiz, projects, etc.

Course developed by

B.R.Naresh, B.E., MBA,

Sub Code	L	Т	Р	Duration	IA	ESE	Total	Credits
MEUFTI2	1	0	0		100		100	1

Environment friendly power generation from coal (One Credit Course)

Course Objectives:

- To understand the importance and challenges associated with power generation from coal in the context of environmental sustainability.
- To explore various technologies and techniques for mitigating the environmental impact of coalbased power generation.
- To examine the potential of clean coal technologies and their application in reducing emissions from coal-fired power plants.
- To promote critical thinking and problem-solving skills in identifying innovative solutions for reducing the carbon footprint of coal-based power generation

Course content

Session 1

Basic aspects of thermal power generation: Power plant cycle, Fuels and its handling, ash handling, Turbine, Feed water heaters, Generator, Condenser, Cooling tower and its types etc.,

Session 2 &3

Types of fuel and its preparation, constituents of fuel and its effect on emission.

Furnace, types of burner, Fuels combustion in boiler — Coal, biomass, co-combustion in the boiler, combustion arrangement, Tangential firing, front and rear wall firing systems.

Session 4 & 5

Air requirement in boiler – Primary, Secondary air, Flue gas generation, Gas velocity, Ash formation, types of waste generation in a power plant, non hazardous, hazardous, waste storage, waste disposal.

Session 6 & 7

Pollutant formation in the boiler, SOx, NOx, CO2, Particulate matter etc. measurement of pollutants, instruments, emission norms, various measures to reduce emission.

Session 8 &9

Heat transfer mechanism in boiler and in auxiliaries like air pre heater, Economiser, Water wall, Super heater, Reheater etc.,

Session 10 & 11

Particulate Matter formation and its control methods. – ESP, bag filter, ash handling systems, Dry and wet ash evacuation its effect on water consumption.

Session 12 & 13

SOx formation and its control techniques – different types, FGD, Wet FGD, Dry FGD, Ammonia FGD, effect of FGD on power plant operation, gypsum formation etc.,

Session 14 &15

NOx formation and its control techniques – different types, SCR, SNCR, combustion modification, effect of NOx control on power plant operation etc.,

Total Hours: 15

References

- 1. Power Generation from Solid Fuels (Power Systems) by Hartmut Spliethoff
- 2. Abatement systems for SOx, NOx, and particles Technical options by Stanley C. Wallin
- 3. Environmental Impact of Power Generation, By The Royal Society of Chemistry, R.E. Hester, R. M. Harrison

Course outcomes

By the end of this course, students will be able to

- CO1 Explain the environmental impact of coal-based power generation, including greenhouse gas emissions, air pollution, and water usage.
- CO2 Identify and evaluate different technologies for reducing emissions and improving the efficiency of coal-fired power plants, such as advanced combustion techniques, flue gas desulfurization, and carbon capture.
- CO3 Understand the concept of clean coal technologies and their application in minimizing environmental pollutants.

Course Outcomes and their mapping with Programme Outcomes:

CO) [PO						PS0		
	΄ Γ	PO1	PO2	PO3	PO4	PO5	P06	P07	P08	P09	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO.	1	1			1		2	3				1	2	2		
CO	2	2					2	3				1	2	2		1
CO.	3	2		1			2	3				1	2	1		

Weightage: 1-Sightly; 2-Moderately; 3-Strongly

Proposed Evaluation system

Industry Integrated course / one-credit course will be evaluated by the course instructor/department faculty concerned and will carry a total of 100 marks for internal assessment such as assignments, seminars, quizzes, projects, etc.

Course developed by

Dr. M. Muthuraman, M.E (NIT, Trichy), Ph.D. (Japan) Additional General Manager, Environment Management Group (EMG), NTPC Sipat, Bilaspur 495 555

Department of Mechanical Engineering

CODE	COURSE NAME	Н	OURS I		CIA	SEA	CREDIT
		L	Т	Р			
MEUFTO1	Fundamentals of Fluid Mechanics	3	-	-	40	60	3

Course Objectives: The student shall

- 1 To familiarize with the properties of fluids and the applications of fluid mechanics
- 2 To formulate and analyze problems related to calculation of forces in fluid structure interaction
- 3 To understand the concept of fluid measurement, types of flows and dimensional analysis
- 4 To understand boundary layer concepts

UNIT-1 Fundamentals

Fundamentals of Fluid Mechanics: Introduction; Applications; Concept of fluid; Difference between solids, liquids and gases; Concept of continuum; Ideal and real fluids; Fluid properties

UNIT-2 Fluid Statics

Fluid Statics: Concept of static fluid pressure; Pascal's law and its engineering applications; Hydrostatic paradox; Pressure distribution in a liquids

UNIT-3 Fluid Kinematics

Fluid Kinematics: Classification of fluid flows; Lagrangian and Euler flow descriptions; Velocity and acceleration of fluid particle; Local and convective acceleration; Normal and tangential acceleration; Flow rate and discharge mean velocity; One dimensional continuity equation; Continuity equation

UNIT-4 Fluid Dynamics

Fluid Dynamics: Euler's equation of motion; Bernoulli's equation using principle of conservation of energy; equation of motion and its applications to steady state ideal and real fluid flows

UNIT-5 Fluid Devices

Fluid devices; Conversion of mechanical to fluid energy - applications

Department of Mechanical Engineering

TEXT BOOKS:

1 Yunus A Cengel, Fluid Mechanics-Fundamentals and Applications, McGraw Hill, 4th Edition, 2019

REFERENCE BOOKS:

- 1 F.M. White, Fluid Mechanics, McGraw Hill, 9th Edition, 2022
- P.N. Modi and S.M. Seth, Hydraulics and Fluid Mechanics Including Hydraulics Machines, SBH, 22nd Edition, 2019

WEB RESOURCES

- 1 https://nptel.ac.in/courses/112104118
- 2 https://onlinecourses.nptel.ac.in/noc21_me75/preview
- 3 https://edurev.in/courses/24694_Fluid-Mechanics-and-Hydraulic-Machines

Course	e Outcomes (COs): After the course completion, student shall be able to
CO1	Understand the concept of fluids and their properties
CO2	Distinguish various types of flows and learn flow measurement methods
CO3	Apply the concept to solve the problems related to fluid statics
CO4	Apply concepts to solve problems on fluid kinematics
CO5	Demonstrate working principle of various fluid-based devices

_							PO							PSO	
0	Р	Р	Р	Р	Р	Р	Р	Р	Р	PO	PO	РО	PS	PS	PS
	01	O2	О3	O4	O5	O6	07	O8	O9	10	11	12	O1	O2	O3
С	3	2	1										2	1	1
O1															
С	3	2	2										3	1	1
O2															
С	3	2	2										3	1	1
O3															
С	3	2	1										2	1	1
O4															
С	3	2	1										2	1	1
O5															

Department of Mechanical Engineering

CODE	COURSE NAME	HOUR	S PER V	VEEK	CIA	SEA	CREDIT
MEUFLT1	MODELAD	L	T	P	20	20	
	MTT LAB	-	-	2	20	30	1

Course objectives:

- To understand the working principles of various machines viz lathe, Drilling, milling, shaping and types of Machine Tools used in machining.
- To understand the Super Finishing Processes, CNC machines, Introduction to 3D and 4D printing, Rapid prototyping
- Learn about different alignment techniques and use of jigs & fixtures

S.No.	Title of Experiments
1	To Perform Various Lathe Operations Such As Plain Turning, Step Turning, Taper Turning Knurling And Chamfering
	On A Given Material Made Of Mild Steel.
2	To Perform Milling Operation On The Given Specimen (Mild Steel) & Get To Its Correct Dimensions.
3	To Perform Surface Grinding Operation On The Given Work Piece.
4	To Drill The Given Work Piece As Required And Then To Perform Counter Drilling, Counter Sinking, Tapping
	Operations On The Given Work Piece.
5	To Make A Slot On The Given Work Piece
6	To Understand the computer controlled manufacturing such as CNC, NC, DNC, CAM & CAM

TEXTBOOKS:

- 1. Rao, P.N., Manufacturing Technology, Vol I & Delhi, Tata Mcgraw Hill Publishing Co., New Delhi, 1998
- 2. Sharma, P.C., A Textbook Of Production Technology Vol I And II, S. Chand & Emp; Company Ltd., New Delhi, 1996

REFERENCE BOOKS:

- 1. Manufacturing science By A. Ghosh A.K. Mallik East West Press Pvt. Ltd New Delhi
- 2. Manufacturing Process by O P Khanna Dhanpat Rai Publication
- 3. Manufacturing Engg. And technology by S. Kalpakjian S.R. Schmid, Addision Wesley Longman, New Delhi

WEB RESOURCES

YouTube videos

COs	Statement
CO1	Carry out various operations on lathe machine
CO2	Perform milling and surface grinding operations.
CO3	Perform various drilling operations
CO4	Understanding the computer controlled manufacturing such as CNC, NC, DNC, CAM & Robotics.

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2								3			1	1		
CO2	3								3			1	1		
CO3	3								3			1	1		
CO4	3								3			1	1		

Department of Mechanical Engineering

CODE	COURSE NAME	HOUR	S PER V	VEEK	CIA	SEA	CREDIT
MELLELES	MODELLING AND	L	T	P	20	20	
MEUFLT2	SIMULATION-II LAB	-	-	2	20	30	1

Course objectives:

- 1. To learn the basic features in analysis using FEA software.
- 2. To perform analyses of various problems with 1D and 2D elements
- 3. To perform analysis of dynamic systems in mechanical engineering domain

S.No.	List of Laboratory activities
1	Introduction to Finite Element Analysis software - ANSYS
2	Solve 1D – Structural, thermal and fluid problems
3	Solve Plane truss problems, include problems with symmetry.
4	Solve Beam problems with different boundary and loading conditions
5	Solve 2D problems using different element types. Also analyse effect of element formulation and number of elements
6	Solve plate and shell problems
7	Solve Dynamic problems

REFERENCE BOOKS:

- 1. ANSYS Theory Manual
- 2. ANSYS Tutorials

WEB RESOURCES

YouTube videos

After	completion of the course, the students will be able to	
COs	Statement	Highest BTL
CO1	Use basic modelling features in creating a solid model	K3
CO2	Understand mesh metrics and develop suitable mesh	K3
CO3	Apply suitable components for analysis of mechanical systems	К3

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	1	-	3				3	3		1	3	1	
CO2	1	1	1	2	3				3	3		1	3	1	
CO3	3	3	3	2	3				3	3		1	3	1	

Department of Mechanical Engineering

CODE	COURSE NAME	HOUR	S PER W	VEEK	CIA	SEA	CREDIT
		L	T	P	40	60	2
MEUETT4	Automobile Engineering	3	-	-	40	60	3

Course objectives:

- 1. This introduces the student about automobiles, its components and give them a brief idea about electric vehicles and its importance.
- 2. To study the importance of assembly components of automobiles.
- 3. The course provides the knowledge of various transmission, drive shaft design, four and all-wheel drive systems.
- 4. To study the importance of steering system, suspension system, braking system, and wheels & tires.
- 5. The course gives basic technical foundation regarding electric vehicles.

UNIT – I	Introduction to automobiles								
	Main units of automobile chassis & body, different systems of the automobile,								
	description of the components of IC engine, automobiles & electric prime								
	movers. Resistance to motion, tractive effort & traction, road performance								
	curves. Introduction to Electric vehicles: Understanding the foundations of the								
	electric vehicles, basics of electric motors, basics of motor controller (EVs).								
UNIT -II	Transmission system & gear box								
	Layout of transmission system, main function of the different components of								
	transmission system, traditional & modern transmission system, clutch, four								
	wheel drives. Hotchkiss & torque tube drive. Ward Leonard Speed Contro								
	System. Communication Protocols (in case of EVs).								
	Gear box: Sliding mesh, constant mesh & synchromesh gear box, overdrive,								
	torque converter, semi & fully automatic transmission. Hook's joint, Propeller								
	shaft, differential, rear axles, types of rear axles, front axles and front wheel								
	drive.								
UNIT -III	Front wheel geometry, steering system, wheels & tires								
	Camber, Castor, Kingpin inclination, toe-in & toe-out, condition for true rolling								
	motion of wheels during steering. Components of steering mechanism, power								
	steering.								
	Wheels & tires: Types of wheels, Slip angle, under & over steering,								
I DUT IV	specification, tubeless tire.								
UNIT IV	Suspension & Safety system, Braking system								
	Suspension & Safety system: Types of suspension system, leaf spring, coil								
	spring & torsion bar. Telescopic type shock absorber, pneumatic suspension								
	system, air bag, crash resistance & passenger comfort.								
	Braking system: Hydraulic braking system, braking of vehicles when brake is								
	applied to rear, front and all four wheel, theory of internal shoe brake, disc								
	brake, power brake & antilock braking system.								
UNIT V	Modern Vehicle Technology								
	Fuel cells technology for vehicles, Types of fuel cells, Current state of the								
	technology, Potential & challenges, Latest engine technology. Basics of								

Department of Mechanical Engineering

Lithium-ion batteries (used in EVs), Battery management system (in EVs),
Charging technology and implementation (in EVs). Connecting Rods - Forces
Acting on the Connecting Rod - Design of Connecting Rod.
Crankshafts - Design Procedure for Crankshaft - Design for Centre Crankshaft
- Side or Overhung Crankshaft.

TEXT BOOKS:

- 1. Automobile Engineering, K.K. Ramalingam, Scitech Publications Pvt Ltd.
- 2. Automobile Technology, Dr. N.K. Giri, Khanna Publishers.
- 3. Automobile Engineering, Prof. Amitosh De, Galgotia Publications Pvt Ltd.
- 4. Modern Transmission Systems, A.W.Judge, Chapman & Hall Ltd.
- 5. Automotive Mechanics-Principle & Practice, Josepe Heitner, East West Press.
- 6. Torque Converter, P.M.Heldt, Chilton Book Co.

After completion of the course, the students will be able to								
COs	Statement							
CO1	Understanding design and analysis of transmission & drive system, Analyse use of suitable materials in making automobile components.							
CO2	Design the shaft and temporary joins for varied application graduates will be able to demonstrate & get an idea in identifying understand the problems in conventional automobiles & electric vehicles.							
СОЗ	Course will develop a strong base for understanding future developments in the automobile industry to the graduates.	K2						
CO4	Understand importance and features of different systems like axle, differential, brakes, steering, suspension, and balancing etc.							
CO5	Identify Modern technology and safety measures used in Automotive Vehicles							

COs	PO1	PO2	PO3	PO4	PO5	PO5	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3										1		
CO2	3	3	3										1		
CO3	3	3	2										1		
CO4	3	3	2										1		
CO5	3	3	2										1		