CFD ANALYSIS AND ASSESSMENT OF PERFORMANCE PARAMETERS OF A CO-AXIAL PIPE EVACUATED TUBE SOLAR AIR HEATER

THESIS

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS OF THE DEGREE OF

MASTER OF TECHNOLOGY

(Machine Design)

Submitted by

SUBHRANT LAHREY

(Roll Number- 21040109)

Under the supervision of

PROF. T.V. ARJUNAN

and

MR. PRASHANT KUMAR JANGDE

DEPARTMENT OF MECHANICAL ENGINEERING

School of Studies of Engineering and Technology

Guru Ghasidas Vishwavidyalaya (A Central University) Bilaspur,

Chhattisgarh, India

OCTOBER 2023

CERTIFICATE

As per University Grant Commission (promotion of academic integrity and prevention of plagiarism in higher education institute) regulation 2018 dated 13th july 2018 progress report "CFD ANALYSIS AND ASSESSMENT OF PERFORMANCE PARAMETERS OF A CO-AXIAL EVACUATED TUBE SOLAR AIR HEATER" of Subhrant Lahrey, a student of M.Tech (Machine Design) 4th semester has been checked by URKUND software available at Central Library, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India. The amount of similarity in the progress report ___. The signed URKUND similarity report is attached to the certificate.

Subhrant Lahrey

Signature of supervisors

Mr. Prashant Kumar Jangde

Department Mechanical Engg. Dept.

Mechanical Frechnology

Constitute of Technology

Constitute Ghasidas V.V.

Constitute

CERTIFICATE BY EXAMINERS

This is to certify that the "Dissertation-Interim Evaluation" entitled "CFD ANALYSIS AND ASSESSMENT OF PERFORMANCE PARAMETERS OF A CO-AXIAL PIPE EVACUATED TUBE SOLAR AIR HEATER"

Submitted by

Name - Subhrant Lahrey Roll no. - 21040109 Enrollment No. - GGV/21/01609

Has been examined by undersigned as a part of an examination of Master of Technology (Machine Design) at Department of Mechanical Engineering, School of Studies of Engineering and Technology, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, INDIA. The dissertation is found to be satisfactory.

Examiner 1

Date: 10/1/2024

Examiner 2

Date: 10/01/2019

Examiner 3

Date: why

ABSTRACT

The increasing exponential demand for energy today is straining our resources, particularly traditional energy sources that are depleting rapidly. In response, there's a growing emphasis on utilizing non-conventional energy sources across various applications. Solar energy stands out as a vast and environmentally friendly energy source, and India benefits from abundant sunshine year-round. Over time, various solar collectors have been developed to capture the Sun's thermal energy. One such innovation is the Evacuated Tube Solar Collector (ETSC), designed to harness solar energy for heating water or air. The energy collected by ETSC can serve a wide range of purposes, both in domestic and industrial settings.

This research involves a computational fluid dynamics (CFD) analysis of a co-axial Evacuated Tube Solar Collector (ETSC) used for air heating applications. The primary goal is to evaluate how the ETSC performs thermally under various mass flow rates and heat flux conditions. The validity of our computational model is established by comparing it to an existing experimental study. Our findings indicate that the highest air outlet temperature 356.708 K and 37.3 °C whereas the inlet temperature 319.4 K from the solar collector manifold are achieved when using a configuration with a mass flow rate of 9.36 kg/h and a constant heat flux of 888 W/m² and the maximum thermal efficiency 63.45% achieved at a mass flow rate of 18.36 kg/h and a constant heat flux of 822 W/m². This particular configuration outperforms all other configurations considered. Furthermore, we explore potential design enhancements that could further boost the overall thermal efficiency of the system.

TABLE OF CONTENTS

TITLE CANDI		S DECLARATION		
CERTI	FICATE	EII		
CERTI	FICATE	E BY EXAMINERS		
ACKNO	OWLED	GEMENT		
ABSTR	ACT	V		
TABLE OF CONTENTSVI				
LIST O	F FIGU	RESVIII		
LIST O	F TABL	.ES IX		
NOME	NCLAT	URES IX		
CHAPT	TER-1	INTRODUCTION1		
1.1	Solar 1	Energy 1		
1.2	Solar	Collectors 1		
1.2.	.1 T	ypes of Solar Collectors2		
1.2.	.2 E	vacuated Tube Solar Collector3		
1.2.	.3 C	oaxial Pipe Configuration5		
1.2.	.4 E	vacuated Tube Solar Collector Operation 6		
1.2.		he Proficiency of Solar Collectors 7		
1.3		round and Motivation 8		
CHAPT		LITERATURE REVIEW9		
2.1		ture Review9		
2.2		vations from the Literature review17		
		tives of the Research 17		
CHAPT		METHODOLOGY18		
3.1	•	nvolved in the research work18		
3.2		e for the computational analysis19		
CHAPT		OMPUTATIONAL FLUD DYNAMICS 20		
4.1		uction of Computational Fluid Dynamics (CFD)		
4.2		ption of model 21		
4.3	Mathe	matical Equation 27		
4.3.		hermal efficiency 27		
4.3.		ernoulli's equation		
4.3.	.3 C	ontinuity, Momentum and Energy equation28		

LIST OF FIGURES

Figure: 1.2.1 – Types of solar collectors	3	
Figure: 1.2.2 – Evacuated tube solar collectors		
Figure: 1.2.3 – Heat pipe ETC	4	
Figure: 1.2.4 – Direct flow ETC	4	
Figure: 1.2.5 – Thermosyphon type	5	
Figure: 1.2.6 – Schematic diagram of coaxial ETSC	5	
Figure: 1.2.7 – Working process of ETSC	6	
Figure: 3.2.1 – Outline of process planning for computational analysis	19	
Figure: 4.2.1 (a) – CFD model of co-axial solar air heater	21	
Figure: 4.2.1 (b) – CFD model of co-axial solar air heater	22	
Figure: 4.2.2 – Meshed fluid model	24	
Figure: 4.2.3 – Meshed solid model	25	
Figure: 4.2.4 – Named selections applied for analysis	26	
Figure: 4.2.5 – Fluent diagram of solar air heater	26	
Figure: 4.5.1 – Referred experimetal setup	30	
Figure: 5.2.1 – Variation of temperature at various locations of the air	33	
heater for 699 W/m^2		
Figure: 5.2.2 – Variation of temperature at various locations of the air	35	
heater for 864 W/m^2		
Figure: 5.2.3 – Variation of temperature at various locations of the air	37	
heater for 822 W/m^2		
Figure: 5.2.4 – Variation of temperature at various locations of the air	39	
heater for 888 W/m ²		
Figure: 5.3.1 – Difference in temperature from Table 4.2.1	42	
Figure: 5.3.2 – Difference in temperature from Table 4.2.2	42	
Figure: 5.3.3 – Difference in temperature from Table 4.2.3	43	
Figure: 5.3.4 – Difference in temperature from Table 4.2.4	43	
Figure: 5.4.1 – Difference in thermal efficiency from Table 4.4.1	46	
Figure: 5.4.2 – Difference in thermal efficiency from Table 4.4.2	46	
Figure: 5.4.3 – Difference in thermal efficiency from Table 4.4.3	47	
Figure: 5.4.4 – Difference in thermal efficiency from Table 4.4.4	47	

LIST OF TABLES

Table: 4.2.1 – Material properties used for computational model	23
Table: 5.3.1 – Comparison of outlet air temperature for Case-I	39
Table: 5.3.2 – Comparison of outlet air temperature for Case-II	40
Table: 5.3.3 – Comparison of outlet air temperature for Case-III	40
Table: 5.3.4 – Comparison of outlet air temperature for Case-IV	41
Table: 5.4.1 – Comparison of efficiency for heat flux 699 W/m ²	44
Table: 5.4.2 – Comparison of efficiency for heat flux 864 W/m ²	44
Table: 5.4.3 – Comparison of efficiency for heat flux 822 W/m ²	45
Table: 5.4.4 – Comparison of efficiency for heat flux 888 W/m ²	45

NOMENCLATURES

CFD	Computational fluid dynamics
ETSC	Evacuated tube solar collector
ETC	Evacuated tube collector
C	Specific heat (J/kg-k)
T	Temperature (°C)
I	Constant heat flux (W/m²)
η	Thermal efficiency
ρ	Density (g/mm ³)
m_a	Mass flow rate of fluid
SC	Solar collector
K	Thermal conductivity (W/m-k)
V	Velocity of the fluid
υ	Poisson's ratio
E	Elastic modulus
$ ho_0$	Density of fluid
A	Area of tube
p	Pressure of the fluid
g	Acceleration due to gravity
G	Shear modulus