गुरू घासीदास विश्वविद्यालय (केन्रीय विस्तरिवालय अधिनयम 2009 क्र. 25 के अंतर्गत स्वापित केन्नीय विश्वविद्यालय) कोनी, बिलासपुर - 495009 (छ.ग.)

Guru Ghasidas Vishwavidyalaya (A Central University Established by the Central Universities Act 2009 No. 25 of 2009) Koni, Bilaspur – 495009 (C.G.)

Department : Mechanical Engineering			
Acaden	Academic Year: 2023-24		
	Sr. No. Programme Code Name of the Programme		
Sr. No.	Programme Code	Name of the Programme	

Following students have carried out their Project work/ Internship/ Field Project/Industrial Training for the academic session 2023-24

S.No.	Name of Student	Page No.
1	Annepu Vijay Kumar	3-8
2	Kanaparthi Abhiram	3-8
3	Himanshu Nimje	3-8
4	Basavala Sudarshana Rao	3-8
5	Akshat Sahu	9-14
6	Bhoumik Sao	9-14
7	Aryav Jagat	9-14
8	Aman Kumar Singh	15-19
9	Swathi Singh	15-19
10	Pulkit Vyas	15-19
11	Ankit Kumar	15-19
12	Ananya Shri Chaurasia	20-25
13	J T Pravallika Padamata	20-25
14	Mainak Ghosh	20-25
15	Rampalli Sumanth Raju	20-25
16	Ashish Chandra Gupta	26-31
17	Ritika Ahirwar	26-31
18	Lad Gajanan Eknath	26-31
19	Manish Kumar Thakur	26-31
20	Ashutosh Yadav	32-37
21	Bhumika Patel	32-37
22	Jay Prakash Rathia	32-37
23	Pappala Jagdeesh	32-37
24	Chaitanya Raj	38-43
25	Ashish Kumar	38-43
26	Anshuman Singh	38-43
27	Pratyush Kumar	38-43
28	D Yaswanth	44-49
29	Vijay Kumar Katarapu	44-49

गुरू घासीदास विश्वविद्यालय (केन्रीय विस्वविद्यालय अधिनयम 2009 क्र. 25 के अंतर्षत स्वापित केन्नीय विस्वविद्यालय) कोनी, बिलासपुर - 495009 (छ.ग.)

Guru Ghasidas Vishwavidyalaya (A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

30	M V Sai Bargov	44-49
31	K Arun Kumar	50-55
32	J Nanibabu	50-55
33	Vidavalaru Vamsi	50-55
34	Kumar Chandan	56-61
35	Tanisha hariyani	56-61
36	Nishant Kumar	56-61
37	Kumar Aman Raj	56-61
38	Mathala rohith kumar	62-67
39	Tafseer Kalam	62-67
40	Rahul Singh Armo	62-67
41	Puli Rohith Prathyush	68-73
42	Immanuel Roban	68-73
43	Abhijit subhash	68-73
44	B Rakesh Kumar	68-73
45	Pawan Kumar	74-79
46	Silaparasetty Kumar	74-79

INNOVATIVE DESIGN & FABRICATION OF AN ENVIRONMENTAL FRIENDLY AIR CONDITIONING SYSTEM

A project/ thesis submitted in partial fulfilment of the requirements

for the degree of

Bachelor of Technology

by

HIMANSHU NIMJE (20104025)

ANNEPU VIJAY KUMAR (20104010)

KANAPARTHI ABHIRAM (20104030)

BASAVALA SUDARSHANA RAO (20104018)

Under the guidance of

Mr. PRATEEK GUPTA SIR (ASSISTANT PROFESSOR)

Department of Mechanical Engineering

School of Studies Engineering and Technology Guru Ghasidas Vishwavidyalaya Bilaspur Session 2020-2024 INNNOVATIVE DESIGN AND FABRICATION OF AN ENVIORNMENTAL FRIENDLY AIR CONDITIONING SYSTEM

Department of Mechanical Engineering
School of Studies of Engineering and Technology
Guru Ghasidas Vishwavidyalaya, Bilaspur, (C.G)

Certificate by the Examiners

This is to certify that the project work entitled "INNOVATIVE DESIGN & FABRICATION OF AN ENVIRONMENTAL FRIENDLY AIR CONDITIONING SYSTEM" submitted by:

Name	Roll No.	Enrollment No.
HIMANSHU NIMJE	20104025	GGV/20/01725
ANNEPU VIJAY KUMAR	20104010	GGV/20/01710
KANAPARTHI ABHIRAM	20104030	GGV/20/01731
BASAVALA SUDARSHANA RAO	20104018	GGV/20/01718

has been examined by the undersigned as a part of an examination of the B.Tech (Mechanical Engineering) 8th semester project at the Department of Mechanical Engineering, School of Studies of Engineering & Technology, Guru Ghasidas Vishwavidyalaya (A Central University) Bilaspur, (C.G)

Internal Examiner

Date:

External Examiner

Date:

air of a particular from the state of Tachnology and the state of Tachnology are under the state of Tachnology and state of Tachnology are under the state of Tachnology and state of Tachnology are under the state of Tachnology and state of

Department of Mechanical Engineering GGV Bilaspui

Koni, Bilaspur - 495009 (C.G.)

INNNOVATIVE DESIGN AND FABRICATION OF AN ENVIORNMENTAL FRIENDLY AIR CONDITIONING SYSTEM

Abstract

The demand for efficient and sustainable cooling solutions has become increasingly critical due to rising global temperatures and the environmental impact of conventional air conditioning systems. In response to this challenge, our project aims to develop an innovative air conditioning system that not only provides effective cooling but also minimizes energy consumption and reduces greenhouse gas emissions.

Our system will incorporate advanced heat exchangers, and optimized refrigerants to enhance energy efficiency. By minimizing energy consumption during cooling cycles, we aim to reduce the overall carbon footprint.

Traditional air conditioners rely on synthetic refrigerants that contribute to ozone depletion and global warming. In contrast, our system will explore natural refrigerants such as water (H2O) which have minimal environmental impact.

Our system will adapt cooling capacity based on room occupancy, ambient temperature, and time of day.

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

INNNOVATIVE DESIGN AND FABRICATION OF AN ENVIORNMENTAL FRIENDLY AIR CONDITIONING SYSTEM

Contents

1.	Introduction	1	
	1.1 The Drawbacks of Conventional AC Systems		
	1.2 Water as a Sustainable Refrigerant		
	1.3 Evaporative Cooling: A Natural Approach		
	1.4 Limitations of Traditional Air Coolers		
	1.5 Ensuring a Cool Ride: Validating Bus Air		
	Conditioning Performance		
	1.6 Working Principle		
2.	Literature Review	5	
	2.1 Literature Review		
	2.2 Literature Gap		
	2.3 Objective		
3.	Methodology	7	
	3.1 Fabrication and Experimental setup	•	
	3.2 Practical testing procedure		
	3.3 Overview of the project		
	3.4 CAD Model of Proposed Design		
	3.5 Components Used		
4.	Experimental Setup and Result	14	
	4.1 CFM (Cubic Feet Per Minute)		
	4.2 Cooling Efficiency		
	4.3 Advantages		
5.	Conclusion and Future Scope	18	
	5.1 Conclusion		
	5.2 Future Scope		
6.	References	20	

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

INNNOVATIVE DESIGN AND FABRICATION OF AN ENVIORNMENTAL FRIENDLY AIR CONDITIONING SYSTEM

List of Figures

Fig.no.	Figure Name	Page no.
1	CAD Model	8
2	Cooling hollow cone spiral spray nozzles	11
3	DC fan 12V 12025 2pin 120 x 120 x 25mm	11
4	Fy-12 LCD digital thermometer and hygrometer	11
	black (2XAG13)	
5	Power supply SMPS 12V DC 30A 360W	12
6	Agri-Kisan heavy duty 12V DC battery operated	12
	sprayer pump motor car bike washing gardening	
	diaphragm water pump (1 hp)	
7	Project Design	13

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

INNNOVATIVE DESIGN AND FABRICATION OF AN ENVIORNMENTAL FRIENDLY AIR CONDITIONING SYSTEM

List of Tables

Table no.	Table Name	Page no.
1	Performance features	14
2	CFM for recommended capacity of room size	14
3	ACH values	15
4	Cooling readings of cabin wrt time	16

Koni, Bilaspur - 495009 (C.G.)

"Shape memory epoxy composite"

"Influence of incorporation of graphene and MWCNT nanoparticles on the mechanical properties and shape memory behavior of epoxy composite"

A project/ thesis submitted in partial fulfilment of the requirements

for the degree of

Bachelor of Technology

by

Akshat Sahu (20104002) Aryav Jagat (20104013) Bhoumik Sao (20104020)

Under the guidance of

Dr. Samarjit Singh

Department of Mechanical Engineering

School of Studies Engineering and Technology Guru Ghasidas Vishwavidyalaya Bilaspur Session 2020-2024

"Shape memory epoxy composite"

Department of Mechanical Engineering School of Studies of Engineering and Technology Guru Ghasidas Vishwavidyalaya, Bilaspur, (C.G)

Certificate by the Examiners

This is to certify that the project work entitled "Influence of incorporation of graphene and MWCNT nanoparticles on the mechanical properties and shape memory behavior of epoxy composite"

Submitted by:

Name	Roll No.	Enrollment No.
Akshat Sahu	20104002	GGV/20/01072
Aryav Jagat	20104013	GGV/20/01714
Bhoumik Sao	20104020	GGV/20/01719

has been examined by the undersigned as a part of an examination of the B-Tech (Mechanical Engineering) 8th semester project at the Department of Mechanical Engineering, School of Studies of Engineering & Technology, Guru Ghasidas Vishwavidyalaya (A Central University) Bilaspur, (C.G)

Internal Examiner

Date:

External Examiner

Biplob Das

Date: 06 . 05. 2024

Head of Department

विभागाध्यक्ष/Head वानिकी अभिवात्रिकी विभाग/Mechanical Engg. Dept त्रीव्योगिकी संस्थान/Institute of Technology गुँस घासीदास वि.वि./Guru Ghasidas V.V. कीमी, विलासपुर (७.ग.)/Koni. Bilaspur (C.G.)

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

"Shape memory epoxy composite"

Abstract

Shape memory polymers (SMPs) are a class of active, deformable materials that can switch between a temporary shape, which can be freely designed, and their original shape. SMPs have gained extensive acceptance as smart materials due to their enormous deformation, low density, numerous stimulation techniques, strong biocompatibility, and other features. Shape memory polymer composites (SMPCs) have emerged as a promising class of materials with unique properties and applications in various industries. This study explores the development of a shape memory polymer epoxy composite. Through a combination of shape memory polymers and epoxy resins, the composite exhibits dynamic shape-changing capabilities. The abstract delves into the synthesis process, mechanical properties, and potential applications, shedding light on the innovative nature of this material in fields such as smart materials and biomedical devices.

गुरू घासीदास विश्वविद्यालय (केन्रीय विस्तविद्यालय अधिनयम 2009 क्र. 25 के अंतर्गत स्वापित केन्नीय विस्तविद्यालय) कोनी, बिलासपुर – 495009 (छ.ग.)

Guru Ghasidas Vishwavidyalaya

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

"Shape memory epoxy composite"

Contents

		*	
1.	Introdu	uction	1
	1.1	Shape Memory Effect in Polymer	2
	1.2	Process of shape memory effect in polymer	3
	1.3	Shape Memory Polymer	5
	1.4	Reinforcement of shape memory polymers	5
2	Literat	ture Review	15
	2.1 Lite	erature Review	7-9
	2.2 Lite	erature Gap	9-10
	2.3 Ain	n and Objective	
3	Propos	sed Methodology	11
	3.1 Ma	aterial Methodology	11-13
	3.2 Fab	prication Process	13
	3.3 Ma	terial Testing	14-15
4	Result	s & Discussion	16-25
5	Conclu	usion	26
6	Defere	nce	27-29

गुरू घासीदास विश्वविद्यालय (केन्रीय विश्वविद्यालय अधिनयम 2008 क्र. 25 के अंतर्गत स्वापित केन्नीय विश्वविद्यालय) कोनी, बिलासपुर - 495009 (छ.ग.)

Guru Ghasidas Vishwavidyalaya (A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

"Shape memory epoxy composite"

List of Figures

Fig.	Figure Name	Pag
No.		No
1.1	Fig.1 Common shape memory cycle	2
1.2	Fig.2 Epoxy	13
1.3	Fig.3 Graphene and MW-CNT	13
1.4	Fig.4 Tensile Testing	14
1.5	Fig.5 Flexural Testing	14
1.6	Fig.6 Mold used for shape memory testing	15
1.7	Fig.7 Process of v-bend shape memory testing	15
1.8	Fig.8 Tensile strength comparison of graphene	16
1.9	Fig.9 Tensile strength comparison of MW-CNT	17
2.0	Fig.10 Tensile strength comparison of both 0.2wt.%	17
2.1	Fig.11 Tensile strength comparison of both 0.4wt.%	17
2.2	Fig.12 Tensile strength comparison of both 0.6wt.%	18
2.3	Fig.13 Flexural strength comparison of both 0.2wt.%	18
2.4	Fig.14 Flexural strength comparison of both 0.4wt.%	18
2.5	Fig.15 Flexural strength comparison of both 0.6wt.%	19
2.6	Fig.16 Shape recovery of epoxy shape memory polymer	19
2.7	Fig.17 Shape recovery of 0.4 wt.% of Graphene	19
2.8	Fig.18 Deformation on tensile Z-axis	20
2.9	Fig.19 Deformation on tensile X-axis	20
3.0	Fig.20 Deformation on compression Y-axis	21
3.1	Fig.21 Deformation on shear XY-axis	21
3.2	Fig.22 Deformation on shear YZ-axis	22
3.3	Fig.23 Deformation on tensile Z-axis	22
3.4	Fig.24 Deformation on compression Y-axis	23
3.5	Fig.25 Deformation on shear YZ-axis	23
3.5	Fig.26 Deformation on shear XY-axis	24
3.8	Fig.27 Deformation on tensile x-axis	25

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009) $Koni, Bilaspur-495009 \ (C.G.)$

"Shape memory epoxy composite"

List of Tables

Table	Table Name	Pag
No.		No
1	Properties Of Epoxy Resins	11
2	Physical and chemical properties of graphene	12
3	Physical and chemical properties of MW-CNT	13
4	Tensile properties of tasted composite	21
5	Flexural properties of tested composite	23

Koni, Bilaspur - 495009 (C.G.)

Al Street Light

AI Street Light

A project/ thesis submitted in partial fulfilment of the requirements

for the award of degree of

Bachelor of Technology

by

Aman Kumar Singh Ankit Kumar Pulkit Vyas Swathi Singh

Under the guidance of

Mr. Bhushan Singh Gautam

Department of Mechanical Engineering

School of Studies of Engineering and Technology Guru Ghasidas Vishwavidyalaya Bilaspur Session 2020-2024

Page | I

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

Al Street Light

Department of Mechanical Engineering School of Studies of Engineering and Technology Guru Ghasidas Vishwavidyalaya, Bilaspur, (C.G)

Certificate by the Examiners

This is to certify that the project work entitled "AI Street Light" Submitted by:

Name	Roll No.	Enrollment No.
Aman Kumar Singh	20104004	GGV/20/01704
Ankit Kumar	20104007	GGV/20/01708
Pulkit Vyas	20104057	GGV/20/01755
Swathi Singh	20104065	GGV/20/01766

has been examined by the undersigned as a part of an examination of the B.Tech (Mechanical Engineering) 8th semester project at the Department of Mechanical Engineering, School of Studies of Engineering & Technology, Guru Ghasidas Vishwavidyalaya (A Central University) Bilaspur, (C.G)

Internal Examiner

Date:

External Examiner

......

Date:

गुरू घासीदास विश्वविद्यालय (केन्रीय विश्वविद्यालय अधिनयम 2009 क्र. 25 के अंतर्गत स्वापित केन्नीय विश्वविद्यालय) कोनी, बिलासपुर - 495009 (छ.ग.)

Guru Ghasidas Vishwavidyalaya

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur – 495009 (C.G.)

Al Street Light

Abstract

Integrating artificial intelligence (AI) with urban infrastructure has opened new avenues for enhancing efficiency and sustainability. This research explores AI-driven street lighting systems, aiming to develop systems capable of dynamically adapting illumination based on real-time detection of objects, such as pedestrians and vehicles. The integration of AI-powered streetlights not only optimizes energy consumption but also enhances urban security. These intelligent systems utilize advanced object detection technology to detect nighttime burglaries and trigger alerts, doubling as a safety measure. By dynamically adapting illumination based on real-time object detection, these street lights address the evolving needs of modern cities, paving the way for smarter, safer, and more sustainable urban environments. Moreover, the significant energy consumption of traditional street lights underscores the urgency of transitioning to more efficient lighting solutions. Additionally, the environmental impact of light pollution on wildlife and the adverse effects on astronomical observations highlight the importance of implementing intelligent lighting systems that mitigate these concerns while ensuring urban security and efficiency.

Artificial intelligence (AI) stands as a testament to the remarkable evolution of technology, particularly in the field of computer vision. With AI, machines can now simulate human intelligence autonomously, revolutionizing various industries. One significant aspect of AI's impact is its role in advancing object detection technologies within computer vision. By analyzing vast amounts of visual data, AI-powered object detection systems, such as YOLOv8, can swiftly and accurately recognize and localize multiple objects within images or video frames. This transformative technology has far-reaching applications, from enhancing surveillance systems and autonomous vehicles to revolutionizing image recognition tasks across diverse industries. As AI continues to evolve, its profound impact on computer vision and object detection technologies promises to shape the present and future of humanity, ushering in a new era of intelligent and adaptive systems.

Object detection and tracking are crucial aspects of computer vision, advancing our understanding of visual data. YOLOv8, a state-of-the-art object detection model, swiftly and accurately recognizes and localizes multiple objects within images or video frames. Leveraging

गुरू घासीदास विश्वविद्यालय (केन्रीय विश्वविद्यालय अधिनयम 2009 क्र. 25 के अंतर्गत स्वापित केन्रीय विश्वविद्यालय) कोनी, बिलासपुर - 495009 (छ.ग.)

Guru Ghasidas Vishwavidyalaya

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009) $Koni, Bilaspur-495009 \ (C.G.)$

Al Street Light

Contents

1.	Introduction	1
	1.1 Background	1
	1.2 Emerging Problems	1
	1.3 Capability of AI	2
	1.4 Object Detection and Tracking	3
	Use of AI to solve the problem	3
2	Literature Review	4
	2.1 Literature Review	4
	2.2 Literature gap	6
	2.3 Objectives of study	7
3	Methodology and Technology used	9
	3.1 Objective Identification	9
	3.2 Data Acquisition and Preparation	9
	3.3 Preprocessing and Data Augmentation	10
	3.4 Model Selection and Training	11
	3.5 Testing and Evaluation	11
	3.6 Real-Time Implementation	12
	3.7 Hardware Integration and Demonstration	12
	3.8 Optimization and Fine-Tuning	12
	3.9 Documentation and Reporting	13
4	Experimental setups	14
	4.1 Object Detection Using YOLOv8	14
	4.2 Testing Vehicle and People Detection	16
	4.3 Detection and Direction of Vehicles and People	19
	4.4 Object Tracking	20
	4.5 Outcome of object tracking	20
	4.6 Light Detection and Custom Dataset Creation	21
	4.7 Model Training and Optimization:	21
	4.8 Shift to GPU Acceleration using Colab	22
	4.9 Integration of Headlight and Person Detection	26

Page | VIII

गुरु घासीदास विश्वविद्यालय (केन्रीय विश्वविद्यालय अधिनयम 2009 क्र. 25 के अंतर्गत स्थापित केन्रीय विश्वविद्यालय) कोनी, बिलासपुर - 495009 (छ.ग.)

Guru Ghasidas Vishwavidyalaya

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

Al Street Light

List of Figures

Fig.	Figure Name	Page
No.		No.
1	Proposed System Diagram	11
2	Object Detection by model	14
3	Person Detection in the video	15
4	Vehicle Tracking and Count	19
5	Person Count in Direction and Tracking Speed in m/h	20
6	Train Batch for Headlight class 0	22
7	Validation Batch of Headlight	22
8	Loss (Cost function) and Metrics function	23
9	Recall-Confidence and Precision-Recall Curve	23
10	Precision-Confidence and F1-Confidence Curve	24
11	Confusion Matrix	24
12	Labels Scatter Plot	25
13	Label Correlogram	24
14	Loss (Cost function) and Metrics function	26
15	Result Summary	27
16	Result Graphs	28
17	Correlation Matrix	28
18	Labels Scatter Plot	29
19	Label Correlogram	29
20	Train Batch for Headlight class 1 and Person for class 0	30
21	Validation Batch of Headlight and Person	30
22	Person and Headlight Detection Combined	31
23	Scale (Working) model of AI STREET LIGHT	51

Koni, Bilaspur - 495009 (C.G.)

Design of Indoor Solar Cooker

DESIGN OF INDOOR SOLAR COOKER

A project/ thesis submitted in partial fulfilment of the requirements

for the degree of

Bachelor of Technology

By

Ananya Shri Chaurasia

J.T. Pravallika Padamata

Mainak Ghosh

Rampalli Sumanth Raju

Under the guidance of

Dr. Jasinta Poonam Ekka

Department of Mechanical Engineering

School of Studies Engineering and Technology
Guru Ghasidas Vishwavidyalaya
Bilaspur
Session 2020-2024

Page | I

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

Design of Indoor Solar Cooker

Department of Mechanical Engineering
School of Studies of Engineering and Technology
Guru Ghasidas Vishwavidyalaya, Bilaspur, (C.G)

Certificate by the Examiners

This is to certify that the project work entitled "Design of Indoor Solar Cooker"

Submitted by:

Roll No.	Enrollment No.
20104006	GGV/20/01706
20104028	GGV/20/01728
20104037	GGV/20/01735
20104060	GGV/20/01758
	20104006 20104028 20104037

It has been examined by the undersigned as a part of an examination of the B.Tech (Mechanical Engineering) 8th semester project at the Department of Mechanical Engineering, School of Studies of Engineering & Technology, Guru Ghasidas Vishwavidyalaya (A Central University) Bilaspur, (C.G)

Internal Examiner

Date: 6.05.24

External Examiner

Date:06.65. Loll

Header Department मिट्यू भी Department वानिकी अभियांत्रिकी विभाग/Mechanical Engg. Depa

गुरू पातीदात वि.वि./Guru Ghasidas V.V. कानी, बिलातपुर (छ ग.) Kron Ghasidas V.V. Department of Mechanical Engineधां स्वाप्त कार्यक्र

Page | II

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

Design of Indoor Solar Cooker

Abstract

With the impending challenge of climate change and global warming that the world is facing right now and in pursuit of our nation's commitment towards achieving net zero carbon emissions by 2050 it is imperative that we progressively move away from conventional sources of energy towards renewables.

One of the most important aspects of our lives is food and the way we cook it requires a fundamental shift to cleaner and economical methods for us to strive forward as a nation. An accessible and inexpensive way of cooking have evaded us till now.

An indoor solar cooker which is reliable during sunshine hours provided with a heat storage medium for cooking at night can prove to be a novel yet inexpensive answer to our problems. Solar energy is ubiquitous and we intend to design a cooker that can facilitate indoor cooking while also being affordable and convenient to the general populace and hopefully finds social and cultural acceptance, consequently greening our kitchens.

For this the paper reviewed multiple solar cooker models, their performances and efficiency in actual cooking to formulate an economical model of cooker. During this we analyzed various solar collector and finally decided in favor of parabolic collector over evacuated tube collectors or ETCs despite having a higher efficiency experience reduced performance over time. Moreover, ETCs were failed to reach high enough temperatures or use in the average kitchen.

To this end we have furnished calculations in this paper for the average energy required to cook in a common household and accordingly designed a parabolic collector in ANSYS Workbench with sufficient area to harness enough energy to complete with a tank and cooktop, the difference between the collector and the cooking top is taken as one floor. This model evaluates the temperature of the working medium at the bulb and provides a pump for maintaining sufficient mass flow rate to the cooktop and storage as well as to maintain enough head to complete the cycle and maintain enough velocity head at the cooktop exit to convert it to potential head and aid thermal siphoning in ascension to the bulb.

Further in this paper we simulated the heat transfer with ANSYS and suggested materials, manufacturing process, insulation materials and maintenance for the model. We have calculated the energy output at the cooktop and provided a cost estimate for the complete setup.

Page | V

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

1

Design of Indoor Solar Cooker

Contents

1	Intro	luction	1
	1.1	Background	1
	1.2	Objectives and Scope	3
	1.3	Limitations	4
	1.4	Future Implications	5
	1.5	Models	6
2	Literature Review		8
	2.1	Literature Review	8
	2.2	Literature Gaps	12
3	Metho	odology/Numerical Analysis	13
4	Exper	imental setups	25
5	Result	ts and Future Scope	31
6	Concl	usion	46
7	Refere	ences	47

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

Design of Indoor Solar Cooker

List of Figures

Fig.	Figure Name	Page
No.		No.
1.1	Parabolic collector	1
1.2	Outdoor parabolic solar cooker	2
1.3	Solar cooker designs	2
1.4	Incident solar intensity map of India	7
2.1	Indoor solar cooker with ETC	10
2.2	Solar cooker with thermal storage	11
2.3	Box type solar cooker	12
3.1	Parabolic collector representative diagram	13
3.2	Variation of efficiency with fluid inlet temperature	16
3.3	Variation of efficiency with concentration ratio	17
3.4	Pressure contour for 5 m/s	19
3.5	Velocity contour for 5 m/s	20
3.6	Temperature contour for 5 m/s	20
3.7	Scaled Residuals for 5 m/s	21
3.8	Pressure contour for 7.5 m/s	21
3.9	Velocity contour for 7.5 m/s	22
3.10	Temperature contour for 7.5 m/s	22
3.11	Scaled Residuals for 7.5 m/s	23
3.12	Variation of performance with mass flow rate	23
4.1	Parabolic collector with bulb	25
4.2	Reservoir	25
4.3	Cooking top	26
4.4	Unstructured meshing of fluid in cooktop pipes	26
4.5	ANSYS model of the setup	27
4.6	Complete CAD model of setup	28

Page | VIII

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

Design of Indoor Solar Cooker

List of Tables

Table	Table Name	Pag
No.		No
4.1	Bill of Materials of the setup	27
4.2	Common Properties of Therminol-55	30
5.1	Material comparison for reflecting surface	33
5.2	Material comparison for support structure	36
5.3	Material comparison for heat absorber	37

Design and Fabrication of Suspension Seat

A project/ thesis submitted in partial fulfilment of the requirements

for the degree of

Bachelor of Technology

Submitted By

Ashish Chandr Gupta (20104014)

Gajanan Eknath Lad (20104035)

Manish Kumar Thakur (20104038)

Ritika Ahirwar (20104062)

Under the guidance of

Mr. Prateek gupta

Department of Mechanical Engineering
School of Studies Engineering and Technology
Guru Ghasidas Vishwavidyalaya

Bilaspur(C.G)

(A Central University)

Session 2020-2024

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

DESIGN AND FABRICATION OF SUSPENSION SEAT

Department of Mechanical Engineering School of Studies of Engineering and Technology Guru Ghasidas Vishwavidyalaya, Bilaspur, (C.G)

Certificate by the Examiners

This is to certify that the project work entitled "Design and Fabrication of Suspension Seats."

Submitted by:

Name	Roll No.	Enrollment No.
ASHISH CHANDR GUPTA	20104014	GGV/20/01715
GAJANAN EKNATH LAD	20104035	GGV/20/01725
MANISH KUMAR THAKUR	20104038	GGV/20/01736
RITIKA AHIRWAR	20104062	GGV/20/01760

has been examined by the undersigned as a part of an examination of the B.Tech (Mechanical Engineering) 8th semester project at the Department of Mechanical Engineering, School of Studies of Engineering & Technology, Guru Ghasidas Vishwavidyalaya (A Central University) Bilaspur, (C.G)

Internal Examiner

Date:

External Examiner

Date:

The state of Technology of the state of the

Department of Mechanical Engineering GGV Bilaspur

Page | II

Koni, Bilaspur - 495009 (C.G.)

DESIGN AND FABRICATION OF SUSPENSION SEAT

Abstract

This project aims to develop a suspension seat for Indian public buses to minimize discomfort from jerking movements. It will integrate bungee cords, pulleys, and springs to absorb jolts and redistribute forces. The system aims to improve ride quality on uneven roads and enhance passenger comfort and safety. Thorough research will identify optimal materials and configurations for components. Prototypes will be tested to ensure reliability.

The suspension seat can significantly reduce passenger discomfort in Indian buses and promote safety and well-being. The innovative system offers a cost-effective solution that is compatible with existing seat designs. By enhancing the travel experience, it has the potential to increase public transportation use and contribute to sustainable transportation in India.

Koni, Bilaspur - 495009 (C.G.)

DESIGN AND FABRICATION OF SUSPENSION SEAT

Contents

1.	Intro	luction				
	1.1	Suspension Seat	1			
	1.2	Components	3			
	1.3	Problem identification	6			
	1.4	Working principles and laws	7			
2	Litera	ature Review				
	2.1	Literature Review	11			
	2.2	Literature Gap	14			
	2.3	Objective	14			
	2.4	Benefits	14			
3	Metho	Methodology/Numerical Analysis				
	3.1	Suspension seat system Analysis	15			
	3.2	Technical properties and values	15			
	3.3	CAD Model	18			
	3.4	Analytical calculation of Properties of Bungee Cord	19			
	3.5	Fabrication	24			
	3.6	Working of suspension seat system	25			
4	Exper	imental setups and result				
	4.1	Model Setup	26			
	4.2	Experimental Method	27			
	4.3	Passenger Review	27			
	4.4	Result	28			
5	Concl	usion & future scope				
	5.1	Conclusion	29			
	5.2	future scope	29			
6	Refere	ences	31			

Page | VII

Department of Mechanical Engineering GGV Bilaspur

Koni, Bilaspur - 495009 (C.G.)

DESIGN AND FABRICATION OF SUSPENSION SEAT

List of Figures

Fig.No.	Figure Name	PageNo
1	Suspension seat demonstration	2
2	Linear motion slider	4
3	Frame structure.	4
4	Bungee cords	5
5	Rolling ball - Pulley	5
6	Fixed component with Bungee cord and pulley	18
7	Different views of Solid works model of Suspension seat	18
8	Physical model of the supposed design	25
9	Experimental Setup	26
10	Experimental Method	27

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

DESIGN AND FABRICATION OF SUSPENSION SEAT

List of Tables

Table no.	Table name	Page no.
1	Elongation & Weight (Single 34 inch Bungee cord)	19
2	Elongation & Weight (two parallel 34 inch Bungee cords)	21
3	Elongation vs Weight (two parallel 68 inch Bungee cords)	22
4	Elongation vs Weight (Single 68 inch Bungee cord)	24

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

Single slope solar still

Project Report

"Experimental study on enhancing the productivity of solar still using different energy storage materials"

Submitted as Major Project Work for 8th Semester of Bachelor of Technology in Mechanical Engineering

Submitted by

Ashutosh Yadav Bhumika Patel Jay Prakash Rathia Pappala Jagadeesh

Under The Guidance of Dr. T.V. Arjunan Professor

Department of Mechanical Engineering School of Studies of Engineering & Technology Guru Ghasidas Vishwavidyalaya (A Central University) Bilaspur (Chhattisgarh)

Session 2020-24

Single slope solar still

Department of Mechanical Engineering School of Studies of Engineering and Technology Guru Ghasidas Vishwavidyalaya, Bilaspur, (C.G)

Certificate by the Examiners

This is to certify that the project work entitled "Experimental study on enhancing the productivity of solar still using different energy storage materials" Submitted by:

Name	Roll No.	Enrolment No.
ASHUTOSH YADAV	20104016	GGV/20/01717
BHUMIKA PATEL	20104021	GGV/20/01720
JAY PRAKASH RATHIA	20104029	GGV/20/01730
PAPPALA JAGADEESH	20104050	GGV/20/01749

has been examined by the undersigned as a part of an examination of the B-Tech (Mechanical Engineering) 8th semester project at the Department of Mechanical Engineering, School of Studies of Engineering & Technology, Guru Ghasidas Vishwavidyalaya (A Central University) Bilaspur, (C.G)

Internal Examiner

Date:

External Examiner

Date:

Head of Department वारिको अभिवात्रिकी विभाग/Mechanical Engg. Dept प्रोदयोगिकी संस्थान/Institute of Technology

गुरु घासीदास वि.वि./Guru Ghasidas V.V. कोनी, बिलासपुर (छ.ग.)/Koni, Bilaspur (C.G.) Department of Mechanical Engineering GGV Bilaspur

II | Page

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

Single slope solar still

ABSTRACT

A solar still in which charcoal functions as heat absorber medium has been constructed. The still presents a 44.6 % improvement in productivity over conventional stills, is cheap, simple to construct, and in addition has the advantages of low thermal capacity, lightweight and ease of operation. It is made of galvanized iron sheet outer rectangular body in which salt water is allowed to percolate through a charcoal bed of particles, and above which a glass plate is made to cover the still at an optimum distance from the charcoal bed. The still bottom is insulated by a suitable layer of polyurethane rigid foam and the still is mounted on an iron frame of adjusted height. Factors such as size of charcoal particles, and still inclination to the horizontal have been investigated. It was found that coarse charcoal particles of intermediate size gave the best productivity.

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

Single slope solar still

List of Figures

Fig. No.	Figure Name	Page No.
Figure 1.1	Energy transfer in conventional solar still	3
Figure1.2	Schematic diagram of single slope solar still	3
Figure 3.1	Methodology for the still	10
Figure 4.1	Insulation material	14
Figure 4.2	Distillation channel	14
Figure 4.3	Fabrication of solar still setup	15
Figure 4.4	Experimental setup	16
Figure 4.5	Pebbles used in solar still	17
Figure 4.6	blue stones used in solar still	17
Figure 4.7	Coal powder used in solar still	17
Figure 4.8	Water used for experiment	17
Figure 4.9	Data logger	19
Figure 4.10	K type thermocouple	20
Figure 4.11	Solar power meter	20
Figure 5.1	Distilled water output	31
Figure 6.1	Variation of temperature with time for pebbles	32
Figure 6.2	Variation of temperature with time for charcoal	32
Figure 6.3	Variation of temperature with time for blue metal	33
Figure 6.4	Variation of temperature with time for water alone	33
Figure 6.5	Time vs inner glass temperature	34
Figure 6.6	Time vs inner side wall temperature	34
Figure 6.7	Time vs basin linear temperature	35
Figure 6.8	Time vs water temperature	36
Figure 6.9	Time vs vapour glass temperature	36
Figure 6.10	Time vs outer glass temperature	37
Figure 6.11	Distilled water output comparison	37
Figure 6 12	Efficiency of different energy storage materials	38

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

Single slope solar still

List of Tables

Table	Table Name	Page
No.		No.
2.1	Literature Review	8
4.1	Specification of solar still	18
4.2	Experimental material	18
4.3	Data logger range values	19
4.4	Channel names used in experiment	23
5.1	Time vs Temperature of pebbles	24
5.2	Time vs Temperature of blue stones	25
5.3	Time vs Temperature of water	26
5.4	Time vs Temperature of charcoal	27
5.5	Time vs inner glass temperature	28
5.6	Time vs inside wall temperature	28
5.7	Time vs basin linear temperature	29
5.8	Time vs water temperature	29
5.9	Time vs vapor temperature	30
5.10	Time vs outer glass temperature	30

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

Single slope solar still

Contents

1 Introduction		tion	1-7
	1.1 Work	ring principle of single slope solar still	2
	1.2 Facto	rs affecting solar still	4
	1.2.1	Glass water temperature	4
	1.2.2	Free surface area and depth of water	4
	1.2.3	Inlet water temperature	5
	1.2.4	Thickness and material for glass cover	5
	1.2.5	wind speed	6
	1.2.6	climatic conditions	6
	1.2.7	slope of the cover	6
	1.2.8	Insulation material and thickness	7
2	Literatur	e Review	8-9
	2.1 Literat	ture review	8
	2.2 Literat	ture gap	9
	2.3 Object	tives of the current study	9
3	Methodol	ogy	10-11
	_	ple of operation	11
		n and Construction s affecting performance	11 11
ı	Experime	ntal setups	12-23
	4.1 Experi	ment analysis	12
	4.2 Compo	onents of solar still	13
	4.3 Experi	mental setup	15
*	4.3.1 s	pecifications of solar still	18
	4.4 Measur	ring instruments	19
	Department (of Mechanical Engineering GGV Bilaspur	XI Pag

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

Design & Fabrication of Thermal Conductivity Measurement Device for Fly Ash Bricks

Design & Fabrication of Thermal Conductivity Measurement Device for Fly Ash Bricks

A project/ thesis submitted in partial fulfilment of the requirements

for the degree of

Bachelor of Technology

by

Anshuman Singh

Ashish Kumar

Chaitanya Raj

Pratyush Kumar

Under the guidance of

Mr. Prashant Kumar Jangde

Department of Mechanical Engineering

School of Studies Engineering and Technology Guru Ghasidas Vishwavidyalaya Bilaspur Session 2020-2024

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

Design & Fabrication of Thermal Conductivity Measurement Device for Fly Ash Bricks

Department of Mechanical Engineering School of Studies of Engineering and Technology Guru Ghasidas Vishwavidyalaya, Bilaspur, (C.G)

Certificate by the Examiners

This is to certify that the project work entitled "Design & Fabrication of Thermal Conductivity Measurement Device for Fly Ash Bricks"

Submitted by:

Name	Roll No.	Enrollment No.
Anshuman Singh	20104011	GGV/20/01711
Ashish Kumar	20104015	GGV/20/01715
Chaitanya Raj	20104022	GGV/20/01722
Pratyush Kumar	20104054	GGV/20/01755

has been examined by the undersigned as a part of an examination of the B.Tech (Mechanical Engineering) 7th semester project at the Department of Mechanical Engineering, School of Studies of Engineering & Technology, Guru Ghasidas Vishwavidyalaya (A Central University) Bilaspur, (C.G)

Internal Examiner

Date: 06,05.2024

External Examiner

Date: 06,05,2024

बिलासपुर (छ ग.)/Koni. Bilaspur (C G.)

ते **वेस्सिंगिकी Bepla** Mechanical Engg. Dept गेद्वीनिकी रास्थान / Institute of Technology गुरु पासीदास वि.वि. / Guru Ghasidas V.V.

गुरू घासीदास विश्वविद्यालय (केन्रीय विश्वविद्यालय अधिनवम 2009 क्र. 25 के अंतर्गत स्थापित केन्रीय विश्वविद्यालय) कोनी, बिलासपुर - 495009 (छ.ग.)

Guru Ghasidas Vishwavidyalaya

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

Design & Fabrication of Thermal Conductivity Measurement Device for Fly Ash Bricks

Abstract

This experimental investigation explores a thorough examination of the thermal conductivity characteristics exhibited by fly ash bricks., a sustainable alternative to conventional building materials. With a growing emphasis on mitigating the environmental impact of construction practices, this study focuses on understanding the physical, mechanical, and environmental properties of fly ash bricks.

As the data from this study becomes available, it is expected to play a pivotal role in shaping decisions related to building material selection, promoting the adoption of environmentally friendly alternatives in the construction industry. The findings are anticipated to contribute to the ongoing discourse on sustainable construction practices, offering a tangible solution to address both environmental concerns and the need for resilient building materials.

This project focuses on the experimental determination of the thermal conductivity of fly ash bricks, employing diverse equipment such as a heat gun, metallic pipe, and thermocouple. The study utilized fly ash bricks with dimensions of 45cm x 30cm x14cm. Thermal conductivity measurements were conducted at varying temperature differences, ranging from 21.6°C to 23.4°C. The results obtained from each equipment configuration were as follows: 0.3074, 0.3133, and 0.3216 W/mK, respectively. Through steady-state temperature measurements, thermal resistance and equivalent heat conductivity were calculated, yielding a numerical result of kb,eq = 0.3074 W/mK. The average thermal conductivity value was determined with a 3 to 4% error margin. This comprehensive approach using different equipment provides valuable insights into the thermal properties of fly ash bricks, enhancing our understanding of their applicability in construction and thermal insulation.

The method employed in the provided equations involves the consideration of heat transfer mechanisms, particularly convection, to determine the thermal conductivity of the fly ash brick. Convection is a process where heat is transferred through a fluid medium, such as air or water, due to the movement of the fluid itself. In this experimental setup, hot air generated by the heat gun serves as the fluid medium through which heat is transferred to the fly ash brick

गुरू घासीदास विश्वविद्यालय (केन्रीय विश्वविद्यालय अधिनयम 2009 क्र. 25 के अंतर्गत स्वापित केन्रीय विश्वविद्यालय) कोनी, बिलासपुर - 495009 (छ.ग.)

Guru Ghasidas Vishwavidyalaya

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

Design & Fabrication of Thermal Conductivity Measurement Device for Fly Ash Bricks

Contents

1.	Chapter 1: Introduction to Thermal Conductivity	
	1.1 Introduction	1
	1.2 Thermal Conductivity	1
	1.3 Complex Nature of Heat Transfer	2
	1.4 Variation in Thermal Conductivity	3
	1.5 Anisotropic Thermal Conductivity	5
	1.6 Measurement	5
	1.7 Factors Affecting Thermal Conductivity	7
	1.8 Importance of Thermal Conductivity	11
	1.9 Fly Ash Bricks	13
2	Chapter 2: Literature Review	
	2.1 Experimental Analysis of a Hollow Brick Filled	14
	with Perlite Insulation	
	2.2 Thermal performance characterization of Cement	15
	based Blocks incorporating rice husk ash	
	2.3 An Experimental Study on Thermal Properties of	17
	Sustainable Bricks Made from Local Industrial Waste	
	2.4 Measuring thermal conductivity	18
	2.5 Analytical Investigation of Heat Transfer in Fly Ash Brick	20
	and Clay Brick Masonry	
	2.6 All-ceramics with ultrahigh thermal conductivity and	21
	superior dielectric properties created at ultralow temperatures	
	2.7 Reuse of fly ash and bottom ash in mortars with	21
	improved thermal conductivity performance for buildings	
3	Chapter 3: Methodology	23
4	Chapter 4: Experimental Components	29
5	Chapter 5: Experimental Procedure	33
6	Chapter 6: Result and Discussion	39
7	Chapter 7: Conclusion	42
8	Chapter 8: Reference	43

Guru Ghasidas Vishwavidyalaya (A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

Design & Fabrication of Thermal Conductivity Measurement Device for Fly Ash Bricks

List of Figures

Fig. No.	Figure Name	Page
		No.
1	The variation of the thermal conductivity of various solids, liquids,	04
	and gases with temperature.	
2	Variation of thermal conductivity with temperature of typical	10
	fluids: (a) gases and (b) liquids.	
3	Effect of temperature on thermal conductivity of selected	11
	solids	
4	Temperature variation on the hot side of the brick [1]	14
5	Temperature variation on the cold side of the brick [1]	15
6	Temperature difference data for RHA block samples [2]	16
7	Actual image of Clay Brick[4]	20
8	Actual image of Fly Ash Brick[4]	20
9	Influence of Mortar Mix on Thermal Conductivity[6]	22
10	Schematic Diagram of Experimental Setup	23
11	Front View of Actual Setup	24
12	Top View of Actual Setup	25
13	Side View of Actual Setup	25
14	Heat Gun	29
15	Polystrene Foam	30
16	Metallic Pipe	31
17	Fly Ash Brick	32
18	Anemometer	3.4

Guru Ghasidas Vishwavidyalaya (A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

Design & Fabrication of Thermal Conductivity Measurement Device for Fly Ash Bricks

List of Tables

Table	Table Name	Page
No.		No.
1	Recommended Thermal Conductivity at Low Temperature of Metals	08
2	Recommended Thermal Conductivity at Moderate and High temperature	08
	of Metals	
3	Recommended Thermal Conductivity of Nonmetallic Solids	09
4	Thermal Conductivity of Selected Liquids	09
5	Average U-value, Thermal conductivity and Thermal resistance of	16
	Analyzed Samples.[2]	
6	Dimensioning of The Guarded Hot Plate According to NF EN 12664 [3]	19
7	Thermal Properties of Building Masonry Materials [4]	20
8	Specification of Anemometer	35
9	Specification of Data logger	37
10	Temperature of different surface at different time interval	39
11	Thermal conductivity values	10

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

Major Project Report

On

"Hybridization effect of mechanical properties of Jute/Basalt/Epoxy Composite Laminates"

A Project Submitted in the partial fulfillment of the requirements for the

Degree of Bachelor of Technology

Mechanical Engineering

Ву

DANDIBOYINA YASWANTH (20104024)

MORRI VEERA SAIBARGOV (20104043)

VIJAYKUMAR KATARAPU (20104070)

B. Tech 8th Semester

Under the guidance of

Mrs. SHWETA SINGH

Department of Mechanical Engineering

DEPARTMENT OF MECHANICAL ENGINEERING

SCHOOL OF STUDIES OF ENGINEERING AND TECHNOLOGY
GURU GHASIDAS VISHWAVIDYALAYA, BILASPUR (C.G.)
SESSION: 2023-2024

i

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

DEPARTMENT OF MECHANICAL ENGINEERING SCHOOL OF STUDIES OF ENGINEERING AND TECHNOLOGY GURU GHASIDAS VISHWAVIDYALAYA, BILASPUR(C.G.)

(A Central University) established by the Central University Act 2009 No.25 of 2009

Certificate the examiners

This is to certify that the project work entitled "Hybridization effect of mechanical Properties of Jute/Basalt/Epoxy Composite Laminates"

Submitted By:-

S. No	Name	Roll. No	Enrollment. No
1	Dandiboyina Yaswanth	20104024	GGV/20/01724
2	Morri Veera Saibargov	20104043	GGV/20/01741
3	Vijaykumar Katarapu	20104070	GGV/20/01771

Has been examined by the undersigned as a part of an examination of B. Tech (Mechanical Engineering) 8th semester project at the Mechanical Engineering School of Studies of Engineering & Technology, Guru Ghasidas Vishwavidyalaya (Central University) Bilaspur.

Date: -

Biplab Dan
External Examiner

Head of Department

विभागाध्यक्ष / Heao वाचिकी अभियांत्रिकी विभाग/Mechanical Engy. Dept प्रौद्योगिकी संस्थान/Institute of Technology गुरु घारीदास वि.वि./Gu[µ Ghasidas V.V. कोनी, बिलाराषुर (छ.ग.)/Koni, Bilaspur (C.G.)

गुरु घासीदास विश्वविद्यालय (केन्रीय विस्वविद्यालय अधिनयम 2009 क्र. 25 के अंतर्गत स्वापित केन्नीय विस्वविद्यालय) कोनी, बिलासपुर - 495009 (छ.ग.)

Guru Ghasidas Vishwavidyalaya (A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

Abstract

This study presents the fabrication and characterization of composite materials using jute and basalt fibers. Jute, a natural and renewable fiber, is combined with basalt, a volcanic rock-derived fiber known for its exceptional mechanical properties. The objective is to harness the benefits of both fibers, creating a lightweight yet durable material suitable for various applications. The fabrication process involves the impregnation of jute and basalt fibers with a compatible resin system, followed by layering and curing. The resulting composite material is evaluated for its mechanical properties, including tensile strength, flexural strength, impact strength, hardness strength. Additionally, thermal and environmental stability are examined to assess the suitability of these composites in various conditions. The findings demonstrate that the combination of jute and basalt fibers yields a composite material with a balance of strength, environmental sustainability, and cost-effectiveness. This research contributes to the ongoing exploration of sustainable materials for applications in sectors such as automotive, construction, and aerospace. The composite's promising characteristics make it a potential candidate for reducing the environmental footprint in various industries while maintaining performance standards.

Guru Ghasidas Vishwavidyalaya (A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

TABLE OF CONTENTS Pg. No. Contents 1-2 Introduction 3 1.1 Uses of composite 1.2 Examples of composite 4-5 1.3 Jute 1.4 Basalt 7 1.5 Difference between Jute & Basalt 2 8-22 Literature Review 3 23 Literature Closure/Research Gap and Objectives 23 3.1 Research gap 24-29 Manufacturing 24 Material required 4.1 25-29 4.2 Methodology 29 4.3 Cost Analysis 30-35 Mechanical characterizations 6 36 6.1 Outcomes 37-38 6.2 Applications 39-42 Result 43 Conclusion 9 44-46 Reference

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

List of Figures

Fg.No	Name	Pg.No	
1	Materials	24	
2	Fabrication Starting Phase	25	
3	Final Specimen	26	
4	ASTM Standards	27	
5	Stacking Sequence	28	
6	Tensile Test Machine	30	
7	Speciemen of Tensile	31	
8	Flexural Test Machine	32	
9	Specimen of Flexural	33	
10	Izod Test Machine	33	
11	Speciemen of Izod	34	
12	Hardness Test Machine	34	
13	Speciemen of Hardness	35	
14	Speciemen of Moisture Absorption	35	
15	Application	38	

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

List of Tables

Table No	Name	Pg.no
1	Mechanical Properities	24
2	Weight Distribution	26
3	Cost Analysis	29

Guru Ghasidas Vishwavidyalaya (A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

Major Project

On

FABRICATION AND COMPARATIVE ANALYSIS OF MAGNETIC SHOCK ABSORBER WITH CONVENTIONAL SHOCK ABSORBER

A project/ thesis submitted in partial fulfilment of the requirements

for the degree of

Bachelor of Technology

by

KARRI.ARUN KUMAR

VIDAVALURU. VAMSI

JAKKULA. NANIBABU

Under the guidance of

Prof. S.P. ANBUUDAYASANKAR

Department of Mechanical Engineering

School of Studies Engineering and Technology Guru Ghasidas Vishwavidyalaya Bilaspur Session 2023-2024

Department of Mechanical Engineering School of Studies of Engineering and Technology Guru Ghasidas Vishwavidyalaya, Bilaspur, (C.G)

Certificate by the Examiners

This is to certify that the project work entitled ""FABRICATION AND COMPARATIVE ANALYSIS OF MAGNETIC SHOCK ABSORBER CONVENTIONAL SHOCK ABSORBER".

Submitted by:

Jakkula, Nani Babu 20104027 GGV/20/01729

Karri. Arun Kumar 20104031 GGV/20/01713

Vidavaluru. Vamsi 20104069 GGV/20/01770

And it has been examined by the undersigned as a part of an examination of the B. Tech (Mechanical Engineering) 8th semester project at the Department of Mechanical Engineering, School of Studies of Engineering & Technology, Guru Ghasidas Vishwavidyalaya (A Central University) Bilaspur, (C.G)

Date: 06/01/2005

Internal Examiner

5. P. & (W)

External Examiner

Date:

Head of Department

S. P. Sell offorpour

भागाध्यक्ष/Heao वाचिकी अभिवांत्रिकी विभाग/Mechanical Engg. Dept प्रौद्योगिकी संस्थान/Institute of Technology गुरु घासीदास वि.वि./Guru Ghasidas V.V. कोनी, विलासप्र (छ.ग.)/Koni, Bilaspur (C.G.)

ii

गुरू घासीदास विश्वविद्यालय (केन्द्रीय विश्वविद्यालय अधिनयम 2009 क्र. 25 के अंतर्गत स्थापित केन्द्रीय विश्वविद्यालय) कोनी, बिलासपुर - 495009 (छ.ग.)

Guru Ghasidas Vishwavidyalaya (A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

Abstract

This paper presents a comprehensive comparative analysis of magnetic and hydraulic shock absorbers, with a focus on their performance characteristics and suitability for automotive applications. Through rigorous evaluation and testing, several key advantages of the magnetic shock absorber have been identified. Firstly, the magnetic shock absorber exhibits lower stiffness compared to its hydraulic counterpart, resulting in a smoother and more comfortable ride for passengers. This attribute allows the absorber to effectively absorb road vibrations and irregularities, enhancing overall ride quality. Additionally, the magnetic shock absorber demonstrates a significant advantage in terms of weight, being lighter than the hydraulic alternative.

This reduction in weight not only enhances fuel efficiency but also minimizes the overall load on the vehicle's suspension system, contributing to improved handling and stability. Furthermore, our evaluation indicates that the magnetic shock absorber boasts a longer lifespan when compared to hydraulic shock absorbers. This longevity can be attributed to the absence of internal fluid seals and components prone to wear and deterioration over time in the magnetic variant. Consequently, the magnetic shock absorber emerges as a superior choice, offering superior comfort, reduced weight, and enhanced durability for various automotive applications. This research provides valuable insights for automotive engineers, manufacturers, and researchers seeking to optimize vehicle suspension systems for improved performance and reliability.

Contents

S.NO		TOPICS	PAGE.NO
1	Introduction		1-4
	1.1	Background	1
187	1.2	Types of shock absorber	1-4
	1.3	Scope and Significance	4
2	Litera	tture Review	5-13
	2.1	Previous studies	5-12
	2.2	Literature Gap	13
	2.3	Objective is to	13
3	Fabrication		14-20
	3.1	Selection of material	14-16
	3.2	Making of Magnetic shock absorber	16-18
	3.3	Making of Support	19-20
4	Experimental Setup		21-24
	4.1	Testing Apparatus	21
	4.2	Measurement Techniques	22
	4.3	Experimental Procedure	23-24
5	Results and Discussions		25-27
	5.1	Parameters	25
	5.2	Cost analysis of magnetic shock absorber	26
	5.3	Calculation of stiffness	26
	5.4	Cost analysis of magnetic shock absorber	27
	5.5	Final comparison of both shock absorber	27
6	Con	clusion	28

٧

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009) $\,$

Koni, Bilaspur - 495009 (C.G.)

List of Figures

Fig.	Figure Name	Page
No.		No.
1	Arrangements of magnets	2
2	Hydraulic shock absorber	3
3	Neodymium magnet	14
4	Stainless steel	15
5	Magnetic damper	17
6	Position of Magnets	18
7	Magnetic shock absorber	18
8	Frame work front view	19
9	Top view of Frame	20
10	Arrangements of Shock absorber in the Frame	20
11	Used for conducting the experiment	21
12	Magnetic shock absorber loaded with different weight loads	24
13	Hydraulic shock absorber loaded with different weight loads	24

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

List of Tables

Table	Table Name	Pag
No.		No
1	Comparison between magnetic shock absorber and hydraulic shock absorber	26
2	Cost analysis of magnetic shock absorber	27
3	Parameter comparison of shock absorber	27

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

DRING OF SENNA LEAVES USING FLAT PLATE SOLAR COLLECTOR

Drying of senna leaves using flat plate solar collectors.

A project/ thesis submitted in partial fulfilment of the requirements

for the degree of

Bachelor of Technology

by

Kumar Aman Raj

Kumar Chandan

Nishant Kumar

Tanisha Haryani

Under the guidance

Mr. Prashant Kumar Jangde

(Assistant Professor)

Department of Mechanical Engineering

School of Studies Engineering and Technology Guru Ghasidas Vishwavidyalaya Bilaspur Session 2020-2024

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

DRYING OF SENNA LEAVES USING FLAT PLATE SOLAR COLLECTOR

Department of Mechanical Engineering
School of Studies of Engineering and Technology
Guru Ghasidas Vishwavidyalaya, Bilaspur, (C.G)

Certificate by the Examiners

This is to certify that the project work entitled "Drying of senna leaves using flat plate collectors."

Submitted by:

Name	Roll No.	Enrollment No.
Kumar Aman Raj	20104033	GGV/20/01732
Kumar Chandan	20104034	GGV/20/01733
Nishant Kumar	20104047	GGV/20/01746
Tanisha Haryani	20104067	GGV/20/01768

has been examined by the undersigned as a part of an examination of the B. Tech (Mechanical Engineering) 8th semester project at the Department of Mechanical Engineering, School of Studies of Engineering & Technology, Guru Ghasidas Vishwavidyalaya (A Central University) Bilaspur, (C.G)

Internal Examiner

Date: 06.05.2024

External Examiner

Date:

विभागाध्यकः/ Head यानिकी ब्रम्भितिकिटिकेम्बर्गार्थक्क्षेत्रेवादेश Engg. Dept प्रोद्योगिकी संस्थान/Institute of Technology गुरु यात्रीदाल वि.वि./Guru Ghasidas V.V.

कोनी, बिलासपुर (छ.ग.)/Koni. Bilaspur (Ç.G.)

Department of Mechanical Engineering GGV Bilaspur

Page | II

गुरु घासीदास विश्वविद्यालय (केन्रीय विश्वविद्यालय अधिनयम 2009 क्र. 25 के अंतर्गत स्वापित केन्रीय विश्वविद्यालय) कोनी, बिलासपुर - 495009 (छ.ग.)

Guru Ghasidas Vishwavidyalaya (A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

DRYING OF SENNA LEAVES USING FLAT PLATE SOLAR COLLECTOR

Abstract

The solar drying system utilizes solar energy to heat up air and to dry any food substance loaded, which is beneficial in reducing wastage of agricultural product and helps in preservation of agricultural product and medicinal plants. Based on the limitations of the natural sun drying e.g. exposure to direct sunlight, liability to pests and rodents lack of proper monitoring, and the escalated cost of the mechanical dryer, a solar is therefore developed to cater for this limitation. This project presents the design and construction of a domestic passive solar dryer. The dryer is composed of flat plate solar collector (air heater) and a solar drying chamber constraining rack of three net trays both being integrated together. The air allowed in through air inlet is heated up in the solar collector and channeled through the drying chamber where it is utilized in drying. The dimensions of the dryer are 152.4cm x 121.92cm x 20cm (length x width x height). The material was used for the construction, chiefly comprising of polystyrene, glass, stainless steel sheet, and Gi net for the trays. Traditionally, senna leaves are dried by spreading the harvest on the floor under Sun or shade for 36-42 hr, which results in contamination and affects the quality. the rapid rate of drying in the dryer reveals its ability to dry senna leaves reasonable rapidly to a safe moisture. The result shows the moisture content using flat plate solar collector get reduce to 34% in 5 hours and then the moisture gets stagnant. In flat plate solar collector, the efficiency is varying from 6.44 % to 9.40 %.

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

DRYING OF SENNA LEAVES USING FLAT PLATE SOLAR COLLECTOR

Contents

Ackn	owieag	ment	
Stude	nt's De	eclaration	
Super	visor's	Declaration	
Certif	ficate b	y the Examiner	
Abstr	ract		
•	List (Of Figures	
•	List	Of Tables	
1. CI	HAPTE	ER 1 Introduction	
	1.1	Importance of Solar Energy	1
		1.1.1 Applications	1
		1.1.2Methods to harness Solar Energy	6
		1.1.3 Advantages.	6
	1.2	Solar Collector Technology	7
	1.3	Type of solar collector	8
	1.4	Information about senna leaves (Medicinal plant)	11
	1.5	Nutritional value of senna	12
	1.6	Different drying method of senna leaves	13
	1.7	Medicinal use of senna leaves.	15
	1.8	Types of dryers	16
2	Liter	ature Review	20
	2.1	Literature review	20
	2.2	Literature gap	27
	2.3	Objectives	27
3	Meth	nodology/Numerical Analysis	28
	3.1	Numerical analysis	28
	3.2	Experimental setup	28
	3.3	Instrument used for collecting data	33
4	Resu	lt and discussion	42
5	Cond	clusion	47

Page | VI

48

Reference

Guru Ghasidas Vishwavidyalaya (A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

DRYING OF SENNA LEAVES USING FLAT PLATE SOLAR COLLECTOR

List of Figures

Fig.	Figure Name	Page
No.		No.
1.1	Solar water heating system	1
1.2	Layout of domestic solar power generation system	2
1.3	Solar ventilation for HVAC system	3
1.4	Solar street lighting system.	4
1.5	Solar space heating reference (Omi energy)	5
1.6	Solar thermal power production reference(mech4study)	5
1.7	Flat plate collector reference (Tru sun power)	9
1.8	Evacuated tube collector	9
1.9	Line focus collector reference(sciencedirect.com)	10
1.10	Point focus collector	10
1.11	Senna siamea	11
1.12	Tray Dryer.	17
1.13	Rotary dryers	17
1.14	Band dryers.	18
1.15	Oven Dryer	19
1.16	Solar tunnel dryer	19
3.1	3D model of glazing glass	28
3.2	3D model of insulating material	29
3.3	3D model of absorber plate	30
3.4	3D model of fin	31
3.5	3D model of dryer	31
3.6	Sun drying(product)	32
3.7	Solar drying (product)	32
3.8	Humidity and temperature meter and wet bulb temperature dew	34
	point temperature.	
3.9	Solar power meter.	36
3.10	Temperature data logger.	37
3.11	Weighing machine.	38
		Page VII

Department of Mechanical Engineering GGV Bilaspur

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

DRYING OF SENNA LEAVES USING FLAT PLATE SOLAR COLLECTOR

List of Tables

Table	Table Name	Page
No.		No.
1	List of nutritional elements in senna leaves	12
2	Percentage value of nutritional components in senna leaves	12
3	Variation of temperature in different tray.	40
4	Variation of temperature and solar radiation in flat plate solar collector.	40
5	Variation of tray temperature with respect to time.	41
6	Mathematical calculation of efficiency	42
7	Variation of moisture content using flat plate solar collector	43
8	Temperature of all three different tray	44
9	Ambient temperature during drying of senna leaves using flat plate solar	45
	collector.	

Project Topic

B. Tech. Project Topic

Brick Vendors Assessment by using MOORA Technique: An Empirical Survey

A project/ thesis submitted in partial fulfilment of the requirements

for the degree of

Bachelor of Technology

BY Students Name
M.ROHITH KUMAR
TAFSEER KALAM
RAHUL SINGH ARMO

Under the guidance of

DR .ANOOP KUMAR SAHU

Department of Mechanical Engineering

School of Studies Engineering and Technology Guru Ghasidas Vishwavidyalaya Bilaspur Session 2020-2024

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

Project Topic

Department of Mechanical Engineering School of Studies of Engineering and Technology Guru Ghasidas Vishwavidyalaya, Bilaspur, (C.G)

Certificate by the Examiners

This is to certify that the project work entitled" Brick Vendors Assessment by using MOORA Technique: An Empirical Survey"

Submitted by:

Names	Roll Nos.	Enrollment Nos.
Mathala Rohith Kumar	20104040	GGV/20/01738
Tafseer Kalam	20104066	GGV/20/01767
Rahul Singh Armo	20104058	GGV/20/01756

have been audited by the undersigned as a part of an examination of the B. Tech 8th semester project at the **Department of Mechanical Engineering**, School of Studies of Engineering & Technology, Guru Ghasidas Vishwavidyalaya (A Central University) Bilaspur, (C.G).

Internal Examiner

Date:

06/05/24

External Examiner

Date:

गुरु घासीदास विश्वविद्यालय (केन्रीय विश्वविद्यालय अधिनयम 2009 क्र. 25 के अंतर्गत स्वापित केन्नीय विश्वविद्यालय) कोनी, बिलासपुर - 495009 (छ.ग.)

Guru Ghasidas Vishwavidyalaya (A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

Project Topic

Abstract

The rush of Colonizers is escalated at market place to perform the said infrastructure entities. The Colonizers indentified that among all stuffs; necessity to build mall, modern houses etc, brick, sand and cement is needed where the bricks are executed in bulk to build any infrastructure entity. It is extracted by the real empirical survey of 500 colonizers of Asian continents, especially in India that colonizers high earnings and revenues only depends upon materials procurement at feasible cost with others variables (to build effective construction SCM). During survey of 500 colonizers, it is sound that 60% colonizers prioritized the qualitative service variables and residue 40% advised to focus on only cost variables for purchasing any construction stuff from alternative vendors. The brick procurement problem has identified by author, experienced the lacking of decision support system-module, can address the qualitative and quantitative variables at a time for aiding buying of bricks from alternative vendors. This research gap is accepted as research objective. It is also observed by peer-literature survey that there is still no invention of a soft computing technique to tackle the data in the form of % and crisp score vs qualitative and quantitative variables respectively, to lead Brick Vendor (BV) evaluation and benchmarking decision in the field of CSCM. This research gap is also respected as research objective. The authors proposed a DSS. consisted of module' 'service based qualitative as well as production cost related quantitative variables' with MOORA (Multi-Objective Optimization by Ratio Analysis) simulation decision technique' to lead the Brick Vendor (BV) evaluation and benchmarking decision. The objective of research is to help the colonizers of Asian continents to evaluate the optimum BV among feasible BVs. The results are illustrated in conclusion section.

Keywords: Construction Management (CM), Brick supplier, Qualitative and Quantitative variables, Brick Vendors (BVs), Brick Production Cost Variables.

गुरू घासीदास विश्वविद्यालय (केन्रीय विस्तविद्यालय अधिनयम 2009 क्र. 25 के अंतर्गत स्वापित केन्नीय विस्तविद्यालय) कोनी, बिलासपुर – 495009 (छ.ग.)

Guru Ghasidas Vishwavidyalaya (A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

Project Topic

Contents

1. Introduction		1-3
1.1Construction Management		1
1.2 Decision Making		2
1.2 Multi Criteria Decision Makir	ng	3
2. Literature Review		4-7
3. Model and Methodology	*	8-23
3.1 Numerical analysis technique		12
3.2 Research model impleme	entation for BV benchmarking:	13
4. Results and Discussions		24
5. Conclusion		25
6 Deferences		26

गुरू घासीदास विश्वविद्यालय (केन्रीय विस्वविद्यालय अधिनयम 2009 क्र. 25 के अंतर्गत स्वागित केन्रीय विस्वविद्यालय) कोनी, बिलासपुर - 495009 (छ.ग.)

Guru Ghasidas Vishwavidyalaya

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

Project Topic

List of Figures

Fig.	Figure Names	Page
No.		No.
1.1	Brick vendor benchmarking model	4
1.2	Brick manufacturing in Vendor Firms	5
3.1	Research framework	9
3.2	Research model	11
3.3	Brick manufacturing machine	14
3.4	Equiry about the quality of brick In brick firms	14
3.5	checking quality of bricks	15
3.6	discussing with contractor about bricks	15
3.7	Visting brick vendors	16
4 1	Performance score vs. BVs	20

गुरू घासीदास विश्वविद्यालय (केन्रीय विस्वविद्यालय अधिनयम 2009 क्र. 25 के अंतर्गत स्वामित केन्नीय विस्वविद्यालय) कोनी, बिलासपुर - 495009 (छ.ग.)

Guru Ghasidas Vishwavidyalaya

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

Project Topic

List of Tables

Table	Table Name	Page
No.		No.
3.1	Table: 3.1: Brick Vendor Evaluation and Benchmarking Qualitative	16
	and Qualitative Variable module	
3.2	Table: 3.2: Attitudes of all variables	17
3.3	Table: 3.3: Data vs quantitative variables	17
3.4	Table: 3.4: Data vs qualitative variables for BV ¹	18
3.5	Table: 3.5: Data vs qualitative variables for BV ²	18
3.6	Table: 3.6. Data vs qualitative variables for BV ³	19
3.7	Table: 3.7. Normalized matrix vs all variables for BV1-2-3	19
3.8	Table: 3.8. Scoring and ranking of BV ¹⁻²⁻³	19

Guru Ghasidas Vishwavidyalaya (A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

Fabrication and Experimental Testing of Bagasse Reinforced Lightweight Composites

Fabrication & Experimental Testing of Bagasse Reinforced Light Weight Composites

A project/ thesis submitted in partial fulfilment of the requirements

for the degree of

Bachelor of Technology

by

P. Rohith Prathyush Immanuel Roban A Abhijith Subhash B. Rakesh Kumar

Under the guidance of

Mr. Biplab Das

Department of Mechanical Engineering

School of Studies Engineering and Technology Guru Ghasidas Vishwavidyalaya Bilaspur Session 2020-2024

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

Fabrication and Experimental Testing of Bagasse Reinforced Lightweight Composites

Department of Mechanical Engineering School of Studies of Engineering and Technology Guru Ghasidas Vishwavidyalaya, Bilaspur, (C.G)

Certificate by the Examiners

This is to certify that the project work entitled "Fabrication and experimental testing of Bagasse Reinforced Lightweight Composites"

Submitted by:

Name	Roll No.	Enrollment No.
P. Rohith Prathyush	20104056	GGV/20/01754
Immanuel Roban	20104026	GGV/20/01727
Abhijith Subhash	20104001	GGV/20/01701
B. Rakesh Kumar	20104017	GGV/20/01721

has been examined by the undersigned as a part of an examination of the B.Tech (Mechanical Engineering) 8th semester project at the Department of Mechanical Engineering, School of Studies of Engineering & Technology, Guru Ghasidas Vishwavidyalaya (A Central University) Bilaspur, (C.G)

Biplab Das

Internal Examiner

Date: 10-05-2024

External Examiner

Date: 10 45 24

H.O.D (Mechanical Engineering)

रेकी अभियांत्रिकी विभाग/Mechanical Engg. Dept प्रौद्योगिकी संस्थान/Institute of Technology गुरु घासीदास वि.वि./Guru Ghasidas V.V.

कीनी, बिलासपुर (छ.ग.)/Koni, Bilaspur (C.G.)

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

Fabrication and Experimental Testing of Bagasse Reinforced Lightweight Composites

Abstract

This project focuses on the development of bagasse-reinforced lightweight composites, employing ASTM-D certified art resin as a binding agent. The bagasse undergoes treatment with NaOH followed by retreatment with KMnO4. Three distinct specimens were prepared, each featuring varying concentrations of KMnO4 (1%, 2%, and 3%). The objective is to explore the mechanical and structural properties of these composites to ascertain their suitability for repurposing agricultural waste into durable planks. These planks are envisioned to be utilized in everyday furniture, offering a sustainable alternative to conventional materials. Through systematic experimentation and analysis, this study seeks to contribute to the advancement of eco-friendly materials in the realm of furniture manufacturing, aligning with the principles of circular economy and waste reduction.

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

Fabrication and Experimental Testing of Bagasse Reinforced Lightweight Composites

Contents

1.	Introdu	ction	1
	1.1	Background & Inspiration	1
	1.2	Usage of Home Use Art Resin	2
	1.3	Usage of Natural Fibre Bagasse	3
	1.4	Why Natural Fibres?	4
2	Literatu	re Review	6
	2.1	Literature Review	6
	2.2	Literature Gap	14
	2.3	Objectives of Current Study	14
3.	Method	ology	15
	3.1	Production Materials	15
	3.2	Helping Materials	16
	3.3	Treatment Materials	17
	3.4	Fabrication process	19
	3.5	Mechanical Testing	22
4.	Results	& Discussions	27
	4.1	Moisture Absorption Test	27
	4.2	Tensile Analysis Result	28
	4.3	Flexural Analysis Result	31
	4.4	Impact Analysis Result	33
5.	Outcom	es & Applications	36
6.	Conclus	ion	38
7.	Referen	ces	38

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

Fabrication and Experimental Testing of Bagasse Reinforced Lightweight Composites

List of Figures

Fig.	Figure Name	Page
No.		No.
1	Epoke Home Use Art Resin	2
2	Natural Fibre	4
3	Art Resin	15
4	Bagasse	16
5	Silica Mold	17
6	Vaseline Releasing agent	17
7	Sodium hydroxide (NaOH)	18
8	Potassium permanganate (KMNO ₄)	19
9	Meshing Properties	26
10	Graph of Moisture Absorption Results	27
11	Graph of Tensile Strength Analysis(Tensile Analysis)	29
12	Tensile Strength Analysis	30
13	Graph of total deformation (Tensile analysis)	30
14	Deformation (Tensile analysis)	30
15	Graph of Flexural Strength Analysis (Flexural Analysis)	31
16	Flexural Strength Analysis	32
17	Graph of total deformation (Flexural analysis)	32
18	Deformation (Flexural analysis)	32
19	Graph of Compression Strength Analysis	33
20	Compression Strength Analysis	34
21	Graph of total deformation (Compression Analysis)	34
22	Deformation (Compression Analysis)	34
23	Specimen Sample 1	36
24	Specimen Sample 2	36

Guru Ghasidas Vishwavidyalaya (A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

Fabrication and Experimental Testing of Bagasse Reinforced Lightweight Composites

List of Tables

Table	Table Name	Page
No.		No.
1	Moisture Absorption Test Result	28
2	Tensile Strength Analysis Result	29
3	Flexural Strength Analysis Result	31
4	Compression Strength Analysis Pagult	22

NUMERICAL INVESTIGATION OF UPSTREAM SWIRLING MOTION ON FLOW OF CONCENTRATED SLURRY IN HORIZONTAL PIPES

A project/ thesis submitted in partial fulfilment of the requirements

for the degree of

Bachelor of Technology

by

Pawan Kumar(20104051) Silaparasetty Kumar(20104064)

Under the guidance of

Dr. Pankaj K Gupta

Department of Mechanical Engineering

School of Studies Engineering and Technology Guru Ghasidas Vishwavidyalaya Bilaspur Session 2020-2024

Page | I

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

Department of Mechanical Engineering School of Studies of Engineering and Technology Guru Ghasidas Vishwavidyalaya, Bilaspur, (C.G)

Certificate by the Examiners

This is to certify that the project work entitled "NUMERICAL INVESTIGATION OF UPSTREAM SWIRLING MOTION ON FLOW OF CONCENTRATED SLURRY IN HORIZONTAL PIPES"

Submitted by:

Name	Roll No.	Enrollment No.
Pawan Kumar	20104051	GGV/20/01750
Silaparasetty Kumar	20104064	GGV/20/01764

has been examined by the undersigned as a part of an examination of the B.Tech (Mechanical Engineering) 8th semester project at the Department of Mechanical Engineering, School of Studies of Engineering & Technology, Guru Ghasidas Vishwavidyalaya (A Central University)

Bilaspur, (C.G)

Internal Examiner

Date:

External Examiner

Date:

Mechanical Engg. Dept प्रौद्विगिकी संस्थान/Institute of Technology रु पासीदास वि.वि./Guru Ghasidas V.V.

कोनी, बिलासपुर (छ.ग.)/Koni. Bilaspur (C G

Department of Mechanical Engineering GGV Bilaspur

Page | III

गुरु घासीदास विश्वविद्यालय (कंद्रीय विश्वविद्यालय अधिनयम 2009 क्र. 25 के अंतर्गत स्थापित कंद्रीय विश्वविद्यालय) कोनी, बिलासपुर - 495009 (छ.ग.)

Guru Ghasidas Vishwavidyalaya (A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

Abstract

The transportation of concentrated slurries through horizontal pipelines presents a complex fluid dynamics scenario. This report presents a comprehensive numerical investigation aimed at understanding the effects of upstream swirling motion on the flow behavior of concentrated slurries within horizontal pipes subjected to swirling motion. We compared the CFD results and experimental* results for normal cross section pipe of diameter 0.103m. To introduce the swirling-motion in the pipeline of diameter 0.103m we attached a swirling section having 'pitch to diameter ratio' 6 and number of lobes are 3,4 &5. For all the three different lobes, study is carried out for volume fraction 19%, 29% & 33% at the two different inlet velocity 3m/s and 5 m/s having two different sand particle size 90 microns and 290 microns. Concentration of sand before the swirling motion and after the swirling motion is major focus of study. Swirl intensity or swirl number which is rapidly declining but after 10.3m from the swirl section its small effect can be seen for 3,4 &5 lobe. Pressure gradient for all the cases is calculated and comparison is made between 3,4 & 5lobe and how it varies with the volume fraction and particle size.

Keywords: Numerical investigation, CFD, Swirling motion, volume fraction, pressure gradient & swirl number

गुरू घासीदास विश्वविद्यालय (केन्रीय विश्वविद्यालय अधिनयम 2009 क्र. 25 के अंतर्गत स्वापित केन्रीय विश्वविद्यालय) कोनी, बिलासपुर - 495009 (छ.ग.)

Guru Ghasidas Vishwavidyalaya

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

Contents

1.	Introduction		
	1.1	Sand Water slurry	1
	1.2	Transportation of slurry	2
	1.3	Swirl motion	2
		1.3.1 Swirling motion	3
		1.3.2 Swirl intensity or swirl number	4
		1.3.3 Swirl decay	4
		1.3.4 Pressure gradient	5
		1.3.5 Pumping power	5
2	Literat	ture Review	8-16
3	CFD N	Modeling	17-31
	3.1 Bas	sics of CFD	17
	3.2 Co	ntinuity equation	18
	3.3 Na	vier-stokes equation	19
	3.4 AN	ISYS Fluent	22
	3.5 Sw	irl geometry creation	23
	3.6 Me		27
	3.7 Bo	undary conditions	31
4	Results & Development		
	4.1 Me	sh Independence test	32
	4.2 Experimental validation		
	4.3 Mass conservation		
	4.4 Pressure gradient		
	4.5 Sar	nd volume fraction	40-46
	4.6 Sw	rirl Number	47-52
5	Conch	usion	53
	Refere	ences	54

Page | VIII

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

List of Figures

Fig.	Figure Name	Page
No.		No.
1	3 lobe sketch	24
2	4 lobe sketch	24
3	5 lobe sketch	24
4	Transition section	25
5	Dimensions and position of pipe	26
6	Mesh	27
12	Aspect Ratio	28
13	Position vs velocity	32
14	Position vs pressure	33
15	Position vs concentration	34
16-21	Volume fraction contours	37-39
23-27	Volume fraction plots	40-46
29.36	Cavirl number plate	47-52

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009) Koni, Bilaspur – 495009 (C.G.)

List of Tables

Table	Table Name	Page
No.		No.
1	Mesh Parameters	27
2	Number of elements in mesh	28
3	Mass flux at 3m/s	35
4	Mass flux at 5m/s	36
5-11	Pressure gradient	47-52