

Guru Ghasidas Vishwavidyalaya (A Central University Established by the Central Universities Act 2009 No. 25 of 2009) Koni, Bilaspur – 495009 (C.G.)

List of New Course(s) Introduced

Department : Mechanical Engineering

Programme Name : B.Tech.

Academic Year: 2024-25

List of New Course(s) Introduced

Sr. No.	Course Code	Name of the Course
01.	MEUETI1	Innovation and Design Thinking
02.	MEUGTD3	Maintenance Engineering and Management
03.	MEUETO1	Fundamentals of Thermodynamics*
04.	MEUFTT2	Finite Element Analysis
05.	MEUFTP1	Machine Tool Technology
06.	MEUFTP2	Product Design & Development
07.	MEUFTP3	Material Characterization
08.	MEUFTI1	Metal Cutting
09.	MEUFTI2	Environment Friendly Power Generation from Coal
10.	MEUFTO1	Fundamentals of Fluid Mechanics*

Minutes of Meetings (MoM) of Board of Studies (BoS)

Academic Year: 2024-25

School : School Of Studies of Engg. & Technology

Department : Mechanical Engineering

Date and Time: 03-07-2024,3:30 PM

Venue : Online

The scheduled meeting of member of Board of Studies (BoS) of Department of Mechanical Engineering, School of Studies of Engg. & technology, Guru Ghasidas Vishwavidyalaya, Bilaspur was held to design and discuss the B. Tech. III year (V and VI semesters) scheme and syllabi.

The following members were present in the meeting:

- 1. Dr. Soumya Gangopadhyay (External Expert Member BoS,Dept. of Mechanical Engg., IIT Bhilai)
- 2. Prof. S.P. Anbuudaysankar (Chairman, BoS, Dept. of Mechanical Engg.)
- 3. Dr.Pankaj Kumar Gupta (Member BoS, Assoc. Professor, Dept. of Mechanical Engg.)
- 4. Dr. Jasinta Poonam Ekka(Member BoS, Assoc. Professor, Dept. of Mechanical Engg.)
- 5. Mr. Roshan Singh Navlur, (Member, Industry Expert, Director, CADMATIC)
- 6. Dr. T.G. Loganathan (Invited member, Assoc. Prof., Dept. of Mechanical Engineering)

The following points were discussed during the meeting

- 1. The course syllabi for 7th and 8th semesters of B.Tech. III Year was discussed. With the consent of all the members, the course scheme and syllabi for the 5 th and 6 th semesters in B.Tech. III year Mechanical Engineering was finalized.
- 2. The committee discussed and approved the scheme and syllabi of B.Tech. III Year ,5 th and 6 th semesters

The following new courses were introduced in the of B. Tech. III year (V and VI Semesters):

- Innovation and Design Thinking (MEUETI1)
- Maintenance Engineering and Management (MEUGTD3)
- Fundamentals of Thermodynamics*(MEUETO1)
- Industrial Sustainability (MEUGTP1)
- Machine Tool Technology (MEUFTP1)
- Product Design & Development (MEUFTP2)
- Material Characterization (MEUFTP3)
- Metal Cutting (MEUFTI1)
- Environment Friendly Power Generation from Coal (MEUFTI2)
- Fundamentals of Fluid Mechanics*(MEUFTO1)

Signature & Seal of HoD

Koni, Bilaspur - 495009 (C.G.)

Scheme and Syllabus

SCHOOL OF STUDIES OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF MECHANICAL ENGINEERING

Scheme of Teaching and Evaluation 2024-25 (As per NEP-2020) Choice Based Credit System (CBCS) and Outcome Based Education (OBE) (Effective from the Academic year 2024-25)

	V-SEM	ESTER SCHE	ME OF TEACHING & EVAL			2024	1-25				
				Teach Hours				Exa	minati	on	
S. N.	Course Type	Course Code	Course Title	Theory		Practica Moswi	Examinatio n in Hours	CIA Maks	SEA Marks	Total Marks	Credits
				L	T	P	Ex	CI	SE	To	
1	Department Core	MEUETT1	Machine Design - I	3	1	-		40	60	100	4
2	Department Core	MEUETT2	Dynamics of Machines	3	•	,		40	60	100	3
3	Department Core	MEUETT3	Heat and Mass Transfer	3	-	-		40	60	100	3
4		MEUETII	Innovation and Design Thinking	1	-	-		100	-	100	1
	Industry Course	MEUET12	Maintenance Engineering and Management								
5	Open Elective	MEUETOI	Fundamentals of Thermodynamics*	3	٠	•		40	60	100	3
6	Practical	MEUELT1	HMT Lab	•	•	2		20	30	50	1
7	Practical	MEUEPV1	Mini Project - II	-	-	3		20	30	50	2
8	Practical	MEUELT2	TOM Lab	-	-	2		20	30	50	1
9	Practical	MEUELT3	Modeling and Simulation – I Lab	1	-	2		20	30	50	2
		Total		14	1	09		340	360	700	20
•	Not for ME students										

Credit Definition:

- >1-hour lecture (L) per week per semester = 1 Credit >1-hour tutorial (T) per week per semester = 1 Credit >2-hour Practical/Drawing(P) per week per semester = 1 Credit
- Four credit courses are to be designed for 50 hours of Teaching-Learning process.
- ➤ Three credit courses are to be designed for 40 hours of Teaching-Learning process.
 ➤ Two credit courses are to be designed for 30 hours of Teaching-Learning process.
 ➤ One credit courses are to be designed for 15 hours of Teaching-Learning process.
- Note: The above is applicable only to THEORY courses

CIA: Two internal Class Tests, each of 15 Marks.

Assignment: 10 Marks

SEA: Semester End Assessment - 60 marks

गुरु घासीदास विश्वविद्यालय (केन्द्रीय विश्वविद्यालय अधिनियम 2009 क्र. 25 के अंतर्गत स्थापित केन्द्रीय विश्वविद्यालय) कोनी, बिलासपुर - 495009 (छ.ग.)

Guru Ghasidas Vishwavidyalaya

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

SCHOOL OF STUDIES OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF MECHANICAL ENGINEERING

Scheme of Teaching and Evaluation 2024-25 (As per NEP-2020) Choice Based Credit System (CBCS) and Outcome Based Education (OBE) (Effective from the Academic year 2024-25)

	VI-SEM	ESTER SCH	EME OF TEACHING & EVAL			V 202	4-25				
				Teach Hours				Exa	minati	on	
S. N.	Course Type	Course Code	Course Title	Theory	Tutorial	Practica VDrawi	Examinatio n in Hours	CIA Marks	SEA Marks	Total Marks	Credits
				L	T	P	Exam	CIA	SEA	Tota	
1	Department Core	MEUFTT1	Machine Design – II	3	1	,		40	60	100	4
2	Department Core	MEUFTT2	Finite Element Analysis	3	-	-		40	60	100	3
3		MEUFTP1	Machine Tool Technology	3		-		40	60	100	3
	Department elective	MEUFTP2	Product Design & Development								
		MEUFTP3	Material Characterization								
4	Industry Course	MEUFTI1 MEUFTI2	Metal Cutting Environment Friendly Power Generation from Coal	1	-	-		100	-	100	1
5	Open Elective	MEUFTOI	Fundamentals of Fluid Mechanics*		-	-		40	60	100	3
6	Project	MEUFPV1	Mini Project			3		20	30	50	2
7	Practical	MEUFLT1	MTT Lab	-	-	2		20	30	50	1
8	Practical	MEUFLT2	Modeling and Simulation – II Lab	-	-	2		20	30	50	1
		Total		10	1	7		320	330	650	18
±	Not for ME students										

Credit Definition:

- > 1-hour lecture (L) per week per semester = 1 Credit
- > 1-hour tutorial (T) per week per semester = 1 Credit
- >> 2-hour Practical/Drawing(P) per week per semester = 1 Credit
- ➤ Four credit courses are to be designed for 50 hours of Teaching-Learning process.
- Three credit courses are to be designed for 40 hours of Teaching-Learning process.
- Two credit courses are to be designed for 30 hours of Teaching-Learning process.
- One credit courses are to be designed for 15 hours of Teaching-Learning process Note: The above is applicable only to THEORY courses

CIA: Two internal Class Tests, each of 15 Marks.

Assignment: 10 Marks

SEA: Semester End Assessment - 60 marks

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

Sub Code	L	T	P	Duration	IA	ESE	Total	Credits
MEUETI1	1	0	0		100		100	1

Innovation and Design Thinking (One Credit Course)

Course Objectives:

- · To understand the concept of innovation and its importance in today's business world
- · To identify the different categories of innovation and their applications in various industries
- To develop the skills required for creative problem-solving and idea generation
- To apply design thinking techniques and tools to identify, define, and solve complex problems in various contexts

Course Content:

CONCEPT OF INNOVATION - Why Innovation is important for businesses, What is Innovation, Difference between Innovation and Invention, Types of Innovation, Product Innovation, Process Innovation, and Business Model Innovation (2)

SKILL & PERSONALITY TRAITS FOR INNOVATION -Personality traits for innovation, Organisational Structure for Innovation. (1)

SPECIAL CATEGORIES OF INNOVATIONS - Disruptive Innovation, Reverse Innovation. (2)

TOOLS FOR FOSTERING INNOVATION - Value Chain Analysis, The 3 Box Approach to Innovation, Focus Groups and other tools, Software tools for Innovation.

(3)

DESIGN THINKING - Design Thinking Mindset, Process of Design Thinking, Idea generation, Understanding the current situation, What if - alternatives, Prototyping, Testing, Cases of application of Design Thinking.

(4)

Design Thinking & Innovation Projects in Groups.

Total - 15

(4)

References:

- 1. Govindarajan, Vijay. The Three-Box Solution, Harvard Business Review Press, 2016.
- 2. Brown, Tim. "Design Thinking." Harvard Business Review, vol. 86, no. 6, 2008,
- Larson, Chris. "Disruptive Innovation Theory: What It Is & 4 Key Concepts." Harvard Business School Online, January 26, 2021, https://online.hbs.edu/blog/post/disruptive-innovationtheory.
- Christensen, Clayton M. The Innovator's Dilemma: When New Technologies Cause Great Firms to Fail. Harvard Business Review Press, 1997
- Soni, Pavan. Design Your Thinking: The Mindsets, Toolsets and Skill Sets for Creative Broklem Splving Notice Proce. 2019.

Koni, Bilaspur - 495009 (C.G.)

4.0 Tools of Maintenance Engineering

(3 HRS)

- 4.1.- Root Cause Analysis.
- 4.2.- Plant Maintenance Module in System Application Product (SAP) in ERP Platform.

After studying this course, the students are able to:

- CO1 Implement the principles, functions and practices adapted in industry for the successful management of maintenance activities.
- CO2 Evaluate the concept of the Horizons of Maintenance Management and strategies used in industries.
- CO3 Explain the knowledge in Maintenance of Mechanical Equipments / Items used in Mining industries.
- CO4 Analyze the conceptual description of Equipments, Methods & Mechanical Maintenance procedures.

Reference:

- 1. Maintenance Engineering and Maintenance by Sri R C Mishra & Sri K Pathak
- 2. Maintenance Engineering and Management by Sri D R Kiran
- 3. Computerized Maintenance Management system made easy by Sri Kishan Bagadia.
- 4. Modern ERP by Marianne Bradford.

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

Maintenance Engineering and Management (ONE CREDIT COURSE)

Sub Code	L	T	P	Duration	IA	ESE	Total	Credits
MEUETI2	1	0	0		100		100	1

Course objectives:

- To understand the principles, functions and practices adapted in industry for the successful management of maintenance activities.
- To provide the concept of the Horizons of Maintenance Management and strategies used in industries.
- To impart the knowledge in Maintenance of Mechanical Equipments / Items used in Mining industries.
- To understand the conceptual description of Equipments, Methods & Mechanical Maintenance procedures.

1.0 Organization and Management of the Maintenance Function.

- 1.1. Redefining Maintenance- Delivery Reliability.
- 1.2.- Effective Maintenance Organization.
- 1.3.- Operating Policies of effective Maintenance.
- 1.4.- SixSigma Concept in Maintenance- Application of Quality Management Principles.

2.0 The Horizons of Maintenance Management

(5 HRS)

- 2.1.- Corrective Maintenance
- 2.2.- Reliability based Preventive Maintenance.
- 2.3.- Predictive Maintenance.
- 2.4.- Condition Monitoring based Maintenance.
- 2.5.- Computer based Maintenance Management System (CMMS).
- 2.6.- Total Productive Maintenance (TPM).

3.0 Maintenance of Mechanical Equipments / Items used in Mining (For indicative purpose).

(4 IIKS

- 3.1.- Bearings.
- 3.2.- Flexible Coupling for power transmission.
- 3.3.- Cranes: Overhead& Gantry.
- 3.4.- Lifting and Pulling device (Chain Pulley Block)
- 3.5.- Belt Drives.
- 3.6.- Mechanical Variable Speed Drives.
- 3.7.- Gear Drives and Speed Reducers.
- 3.8.- Pumps.
- 3.9.- Introduction to Underground Mining Machineries in operation in SECL- Side Discharge Loader / Load Haul Dumper/ Continuous Miner/ High Wall Mining Equipment / Long wall Mining

Equipments - Conceptual description of Equipments, Methods & Mechanical Maintenance procedures.

3.10.- Case Studies.

गुरु घासीदास विश्वविद्यालय (केन्रीय विश्वविद्याल अधिनयम 2009 क्र. 25 के अंतर्गत स्थापित केन्रीय विश्वविद्यालय) कोनी, बिलासपुर - 495009 (छ.ग.)

Guru Ghasidas Vishwavidyalaya

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

Guru Ghasidas Vishwavidyalaya (A Central University) Department of Mechanical Engineering

CODE	COURSE NAME	Н	OURS F		CIA	SEA	CREDIT
		L	T	Р			
MEUETO1	Fundamentals of Thermodynamics	3	-	-	40	60	3

Course Objectives:

- 1 To understand the basic laws of thermodynamics and heat transfer
- To understand the principle of operation of thermal systems like I C Engine, boilers, turbines, condensers etc.

UNIT-1 Introduction

Fundamental Concepts System, surrounding and universe, Concept of continuum, Property, State, Path, process, Cyclic process, Energy and its form, Work and heat, Enthalpy.

UNIT-2 Laws of Thermodynamics

Laws of thermodynamics: Concepts of Temperature, Zeroth law. First law of thermodynamics. Concept of processes, Flow processes and control volume, Flow work, Steady flow energy equation, Mechanical work in a steady flow of process

Second law: Essence of second law, Thermal reservoir, Heat engines, COP of heat pump and refrigerator. Statements of second law, Carnot cycle, Concept of Entropy.

UNIT-3 Thermal Power Plant

Thermal Power Plant Layout; Rankine Cycle, Major components of thermal power plant, Condensers, Cooling Towers.

UNIT-4 Power Producing Machines

Internal combustion engines, basic cycles; Turbines: Basic cycle of turbines, Impulse and Reaction Turbines.

UNIT-5 Power Consuming Machines

Pumps, compressors; Basic of refrigeration cycles, Environmental- friendly refrigerants, and Air conditioners.

TEXT BOOKS:

- P.K. Nag, Engineering Thermodynamics, Tata McGraw-Hill, 6th Edition, 2022
- Sonntag, Borgnakke, Van Wylen, Fundamentals of Thermodynamics,

गुरु घासीदास विश्वविद्यालय (केन्रीय विश्वविद्यालय अधिनयम 2009 क्र. 25 के अंतर्गत स्थापित केन्नीय विश्वविद्यालय) कोनी, बिलासपुर - 495009 (छ.ग.)

Guru Ghasidas Vishwavidyalaya

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

Guru Ghasidas Vishwavidyalaya Central University Department of Mechanical Engineering

CODE	COURSE NAME	HOUR	S PER V	VEEK	CIA	SEA	CREDIT
	FINITE ELEMENT	L	T	P			
MEUFTT2	ANALYSIS	3	-	-	40	60	3

Course objectives:

- 1. Learn fundamental philosophy of domain discretization and formulation techniques
- 2. One- and two-dimensional analysis using FE concepts
- 3. Numerical integration for 2D and 3D elements
- 4. Learn basics of dynamic analysis using FEM

UNIT - I	Introduction to FEM
	Equilibrium of continuum-Differential formulation, Energy Approach-Integral
	formulation, Variational formulation. Overview of approximate methods for the
	solution of the mathematical models: Rayleigh-Ritz methods, Methods of Weighted
	Pacidnale
UNIT - II	One-dimensional analysis – Spring and bar element
	Modelling and discretization, Snape nunctions, elements and Degrees-of-Freedom,
	Strain - displacement relation, Local and Global equations, Applications of FEA. Iso-
	Sub-Super parametric formulations. Natural Coordinate systems and Shape functions:
	Basic concept of natural coordinate.
	1D Elements Structural Problems: Linear and Quadratic elements, Elimination and
	Penalty Approach, Properties of global stiffness matrix. 1D thermal conduction and
	fluid flow problems.
UNIT – III	
	Formulation of Truss element - coordinate transformation, Plane truss. Beam:
	Elementary beam theory, Beam Element formulation, plane frames, various loading
	and boundary conditions.
	1-D natural coordinate, Shape functions in natural coordinate system, Convergence
	requirements, Compatibility and completeness
UNIT – IV	Two-dimensional analysis
	2-D natural coordinate, Concept of shape functions, Shape function for plain elements,
	Shape functions using Lagrange polynomials. Shape functions for serendipity family
	elements
	Gauss Quadrature formula, Gauss Quadrature in two and three dimensions. Plane stress
	and plane strain matrices. Triangular (CST, LST) and Rectangular (Q4, Q8) Elements:
	Shape function, Jacobian matrix, strain-displacement matrix, stress-strain relationship
	matrix, force vector, Limitations of elements.
UNIT -V	Plates and Shells
	Introduction, thin and thick plates: Kirchoff theory, Mindlin plate element, conforming
	and nonconforming elements, degenerated shell elements, reduced and selective
	integration, shear locking and hour glass phenomenon.
	Formulation of dynamic problems, consistent and lumped mass matrices, Solution of
	eigenvalue problems: Transformation methods Jacobi method, Vector Iteration
	methods, subspace iteration method.
1	

TEXTBOOKS:

- 1. Text book of Finite Element Analysis, Seshu P., PHI.
- 2. Fundamentals of Finite element Analysis, David V. Hutton, McGraw Hill

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

Guru Ghasidas Vishwavidyalaya Central University Department of Mechanical Engineering

REFERENCE BOOKS:

- 1. A First Course in the Finite Element Method, Daryl L. Logan, Thompson Learning.
- Concepts and Applications of Finite Element Analysis, R D Cook, D S Malkus, M E Plesha, and R J Witt, Wiley.
- 3. Introduction to Finite Elements in Engineering, Chandrupatla T. R. and Belegunda A. D., PHI.
- 4. Finite element Method in Engineering, S S Rao, Elsevier.
- The Finite Element Method A Practical Course, Liu G. R. and Quek S. S., Butterworth Heinemann.

WEB RESOURCES:

- 1. NPTEL courses
- 2. Coursera

Course Outcome and their mapping with Program Outcomes:

After	completion of the course, the students will be able to	
COs	Statement	Highest BTL
CO1	Understand the basic FE formulations techniques	K3
CO2	Solve elementary problems with 1D elements	K4
CO3	Apply FE techniques to solve 1D beam and plane frame problems	K4
CO4	Formulate FE solution using 2D elements	K3
CO5	Understand application of FE techniques to simple plate and shell problems	К3

COs	POl	PO2	PO3	PO4	PO5	PO5	PO7	PO8	PO9	PO10	POll	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	1									3	1	
CO2	3	3	2	1									3	1	
CO3	3	3	2	1									3	1	
CO4	3	3	2	1									3	1	
CO5	3	3	2	1									3	1	

गुरु घासीदास विश्वविद्यालय (केन्द्रीय विश्वविद्यालय अधिनयम 2009 क्र. 25 के अंतर्गत स्वापित केन्द्रीय विश्वविद्यालय) कोनी, बिलासपुर - 495009 (छ.ग.)

Guru Ghasidas Vishwavidyalaya

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

Guru Ghasidas Vishwavidyalaya Central University Department of Mechanical Engineering

CODE	COURSE NAME	HOUR	S PER V	VEEK	CIA	SEA	CREDIT
		L	T	P			
MEUFTP1	Machine Tool Technology	3	-	-	40	60	3

Course objectives:

- Impart knowledge and principles in material removal processes.
- apply the fundamentals and principles of metal cutting to practical applications using lathes, milling machines, grinding machines, and drill presses, Computer Numerical Control etc
- 3. To demonstrate the fundamentals of machining processes and machine tools.
- To develop fundamental knowledge on tool materials, cutting fluids and tool wear mechanisms
- To apply knowledge of basic mathematics to calculate the machining parameters for different machining processes.
- Understand the computer controlled manufacturing such as CNC, NC, DNC, CAM & Robotics.

KO	DOOLICS.
UNIT – I	Theory of Metal Cutting
	Introduction: Metal Removal Processes, Theory Of Metal Cutting: Chip Formation,
	Orthogonal Cutting- Oblique Cutting- Machinability of metal. Cutting Tool-
	Classification of cutting tools-Single point Cutting Tool Geometry-Cutting Tool
	Materials, Tool Wear, Tool Life, and Cutting Fluids-Functions and properties.
UNIT – II	Lathe and Operations
	Centre Lathe-Construction- Various Operations, Taper Turning Methods, Thread Cutting operation, Lathe Attachments & Accessories.
UNIT - III	Reciprocating Machine Tools
	Shaper -Principal parts, Classification, Specification of shaper, Shaper Mechanisms,
	Types-Hydraulic shaper. Cutting Speed, Feed, Depth of cut & machining time-Various
	shaper operations-Introduction to Planer -Principal parts and working of Double
	housing Planer, Principal parts of Slotter-Working of slotter
UNIT - IV	Drilling and Milling Machines
	Drilling operations- Twist drill geometry -Radial drilling machine-Jigs and Fixtures-
	Definition-Need of Jigs and Fixtures Drill Jig-Locating devices. Milling-
	Classification, Column and knee type milling machine - Milling cutters and
	classification-Fundamentals of milling processes-Milling operations
UNIT -V	Super Finishing Processes
UNIT -V	Super Finishing Processes
UNIT -V	Super Finishing Processes Abrasive Processes- Grinding Wheel - Specifications And Selection, Types Of
UNIT -V	Super Finishing Processes Abrasive Processes- Grinding Wheel - Specifications And Selection, Types Of Grinding Process - Cylindrical Grinding, Surface Grinding, Centre less Grinding-
UNIT -V	Super Finishing Processes Abrasive Processes- Grinding Wheel - Specifications And Selection, Types Of

TEXTBOOKS:

- Rao, P.N., Manufacturing Technology, Vol I & II, Tata Mcgraw Hill Publishing Co., New Delhi, 1998
- Sharma, P.C., A Textbook Of Production Technology Vol I And II, S. Chand & Company Ltd., New Delhi, 1996

Koni, Bilaspur - 495009 (C.G.)

Guru Ghasidas Vishwavidyalaya Central University Department of Mechanical Engineering

REFERENCE BOOKS:

- 1. Manufacturing science By A. Ghosh& A.K. Mallik East West Press Pvt. Ltd New Delhi
- 2. Manufacturing Process by O P Khanna Dhanpat Rai Publication
- Manufacturing Engg. And technology by S. Kalpakjian& S.R. Schmid, Addision Wesley Longman, New Delhi

WEB RESOURCES:

https://www.youtube.com/watch?v=JSWxaFQQm3g https://www.youtube.com/watch?v=galm5 6SUcM https://www.youtube.com/watch?v=McF7OULzspg https://www.youtube.com/watch?v=hah8-30Ecz8

Course Outcomes and their Mapping with Program Outcomes:

COs	Statement
CO1	Understand the cutting tool geometry, mechanism of chip formation and mechanics of orthogonal cutting
CO2	Identify basic parts and operations of machine tools including lathe, shaper, planer, drilling, boring, milling and grinding machine.
CO3	perform locating and clamping devices to produce a component.
CO4	Select a machining operation and corresponding machine tool for a specific application in real time.
CO5	Understanding the computer controlled manufacturing such as CNC, NC, DNC, CAM & Robotics.

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1	1									1	1		
CO2	2	1	1									1	1		
CO3	2	1	1									1	1		
CO4	3	2	1									1	1		
CO5	3	2	1									1	1		

गुरु घासीदास विश्वविद्यालय केन्द्रीय विश्वविद्यालय अधिनियम 2009 क्र. 25 के अंतर्गत स्थापित केन्द्रीय विश्वविद्यालय) कोनी, बिलासपुर - 495009 (छ.ग.)

Guru Ghasidas Vishwavidyalaya

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

Guru Ghasidas Vishwavidyalaya Central University Department of Mechanical Engineering

CODE	COURSE NAME	HOUR	S PER V	VEEK	CIA	SEA	CREDIT
MEUFTP2	PRODUCT DESIGN AND	L	T	P		60	
	DEVELOPMENT	3		-	40		3

Course objectives:

- 1. Make students understand the common features of a Product.
- 2. Impart the knowledge of Engineering Design in product development.
- Enabling students to forecast the product development process.
 To impart knowledge on various product architecture.

UNIT – I	Introduction
	Need for IPPD - New Product design (NPD) - NPD Process- Product Life Cycle (PLC)
	- Product design: Concepts and steps- Product Analysis - Generic Product
	Development process- Identifying the Customer needs Process - Plan and establishing
	product specifications – structured approach.
UNIT - II	Concept generation, Concept selection and Testing
	Task - Structured approaches - clarification - search - externally and internally -
	explore systematically - reflect on the solutions and processes - concept selection -
	methodology - benefits - Concept Testing Process.
TINTEE TH	
UNIT – III	
	Implications - Product change - variety - component standardization - product
	performance - manufacturability - product development management - establishing
	the architecture – creation – clustering – geometric layout development – fundamental
	and incidental interactions - related system-level design issues - secondary systems -
	architecture of the chunks - creating detailed interface specifications.
UNIT - IV	
	Integrate process design -Robust design - Integrating CAE, CAD, CAM tools -
	Ergonomics in Product design- Need for industrial design - impact - design process -
	investigation of for industrial design - impact - design process - investigation of
	customer needs - conceptualization - refinement - management of the industrial
	design process – technology-driven products –user-driven products – assessing the
TRIES TI	quality of industrial design.
UNIT -V	Design for Manufacturing and Product Development
	Design for Manufacturing: Definition - Estimation of Manufacturing cost - reducing
	the component costs and assembly costs - Minimizing system complexity Design
	for Assembly - Guidelines - DFMA Guidelines Design guidelines for the different
	processes: Casting, machining, Injection moulding, welding Prototype basics -
	principles of prototyping – planning for prototypes.
	F

TEXTBOOKS:

1. Karl T. Ulrich and Steven D. Eppinger, "Product Design and Development", McGraw-Hill International - 7th Edition - 2020.

REFERENCE BOOKS:

- 1. Kemnneth Crow, "Concurrent Engg./Integrated Product Development", DRM Associates, 26/3, Via Olivera, Palos Verdes, CA 90274(310) 377-569, Workshop Book.
- Stephen Rosenthal, "Effective Product Design and Development", Business One Orwin, Homewood, 1992, ISBN 1-55623-603-4.

गुरू घासीदास विश्वविद्यालय विश्वविद्यालय अधिनियम 2009 क्र. 25 के अंतर्गत स्थापित केन्द्रीय विश्वविद्यालय) कोनी, बिलासपुर - 495009 (छ.ग.)

Guru Ghasidas Vishwavidyalaya

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

Guru Ghasidas Vishwavidyalaya Central University Department of Mechanical Engineering

CODE	COURSE NAME	HOUR	S PER V	VEEK	CIA	SEA	CREDIT
	MATERIALS	L	T	P			
MEUFTP3	CHARACTERIZATION TECHNIQUES	3	-	-	40	60	3

Course objectives:

- To classify materials characterization techniques
 To understand the principles and operation of different characterization tools
- 3. Explain the operation variables on the formation of quality images/results
- Select suitable characterization tools based on the need of the analysis

UNIT – I	Optical Microscopy
	Fundamentals of optics, Optical microscope and its instrumental details, Variants in
	optical microscopes and image formation, Phase contrast, Polarized light, Sample
	preparation and applications of optical microscopes.
UNIT – II	Electron Microscopy
	Scanning Electron Microscopy (SEM) - Introduction, Instrumentation, Contrast
	formation, Operational variables, Specimen preparation, imaging modes,
	Applications, Limitations.
	Transmission Electron Microscopy (TEM) - Introduction, Instrumentation,
	Specimen preparation-pre thinning, final thinning, Image modes- mass density
	contrast, diffraction contrast, phase contrast, Applications, Limitations.
UNIT – III	X-ray diffraction
	X-ray diffraction: Fundamentals of X-ray generation and scattering, properties and
	applications of X-rays, absorption of X-rays and filters, Bragg's law, X-Ray diffraction
	and applications, working principles of diffractometer, diffraction methods, diffraction
	intensities, factors affecting intensity, 'structure factor' calculations, Indexing of XRD
	patterns.
UNIT – IV	Thermal Characterizations
	Thermal Analysis - Introduction, Common characteristics- Instrumentation,
	experimental parameters, Different types used for analysis, Thermo-gravimetry,
	Differential Scanning Calorimetry, Differential Thermal Analysis, Dynamic
	Mechanical Analysis.
UNIT -V	Magnetic Characterizations
	Magnetic characterization techniques - Introduction to Magnetism, Measurement
	Methods, Measuring Magnetization by Force, Measuring Magnetization by Induction
	method, Types of measurements using magnetometers: M-H loop, temperature
	dependent magnetization, time dependent magnetization.

Text/ Reference Books:

- 1. Characterization of Materials (Materials Science and Technology: A Comprehensive Treatment, Vol 2A & 2B, VCH (1992).
- Semiconductor Material and Device Characterization, 3rd Edition, D.K. Schroder, Wiley-IEEE Press (2006).
- Materials Characterization Techniques, S Zhang, L. Li and Ashok Kumar, CRC Press (2008).
- Physical methods for Materials Characterization, P.E. J. Flewitt and R K Wild, IOP Publishing (2003).
- Characterization of Nanophase materials, Ed. Z L Wang, Willet-VCH (2000).
- Thermal Analysis of Materials, Robert F. Speyer, Marcel Dekker Inc., New York, 1994.

Guru Ghasidas Vishwavidyalaya (A Central University Established by the Central Universities Act 2009 No. 25 of 2009) Koni, Bilaspur – 495009 (C.G.)

Koni, Bilaspur - 495009 (C.G.)

References:

- Fundamentals of Metal Cutting and Machine Tools, B.L.Juneja, G.S.Sekhon and Nitin Seth, 2nd edition, New Age International (P) Ltd, 2005.
- Metal cutting & Tool Design By Ashok Kumar Singh, 1st edition, Vayu Education of India; First Edition, 2014.
- 3. Metal cutting Theory & Practice, Stephenson, David A.; Agapiou, John S, CRC press, 1997.
- 4. Machining & Machine Tools, AB Chattopadhyay, Wiley; Second edition, 2017
- 5. CNC Machines & Automation, Khusdeep Ghoyal, S.K. Kataria & Sons; 2014.

Course Outcomes and their mapping with Programme Outcomes:

со		PO												PSO	
-	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2		1			2					1		1	1	
CO2	3		2		1	1							1		2
CO3	3	2				1	1							2	1
CO4	1	1		1		2	1						1	1	

Weightage: 1-Sightly; 2-Moderately; 3-Strongly

Proposed Evaluation system

Industry Integrated course / one credit courses will be evaluated by the course instructor / department faculty concerned and will carry a total of 100 marks for internal assessment such as assignments, seminars, quiz, projects, etc.

Course developed by

B.R.Naresh, B.E., MBA,

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

Sub Code	L	T	P	Duration	IA	ESE	Total	Credits
MEUFTI1	1	0	0	-	100		100	1

Metal Cutting (One Credit Course)

Course Objectives:

- . To provide students with a comprehensive understanding of the principles and techniques of
- To develop students' proficiency in using various metal cutting tools and machines
- To enhance students' ability to interpret engineering drawings and select appropriate metal cutting methods for specific applications
- · To cultivate students' problem-solving skills in analyzing and resolving issues related to metal cutting processes

Course Content

Basics of Metal Cutting - Various operations - Concepts of stationary and rotary tools 3hrs

Cutting tool evolution - Cutting tool materials - Latest trends in the cutting tools - Grades and Geometries - Coating processes of cutting tools

Workpiece materials - Properties- Cutting tool selection - Machining Concepts - High Speed Machining -Cutting fluids - Wet and Dry Machining 3 hrs

Machine tools - Turning lathe - VMC - HMC - Twin mill centre - Clamping systems - Fixtures 3 hrs

Course Outcomes

CO1	Students will be able to explain the fundamental concepts and theories related to metal cutting, including the mechanics of chip formation, tool wear, and cutting forces
CO2	Students will demonstrate competence in operating and setting up different types of metal cutting machines, such as lathes, milling machines, and bandsaws.
CO3	Students will be able to interpret engineering drawings and select appropriate cutting tools, speeds, and feeds for specific machining operations
CO4	Students will develop the ability to analyze and troubleshoot common problems in metal cutting processes, such as chatter, surface roughness, and dimensional inaccuracies

Koni, Bilaspur - 495009 (C.G.)

Ì	Sub Code	L	T	P	Duration	IA	ESE	Total	Credits
ſ	MEUFT12	1	0	0		100	-	100	1

Environment friendly power generation from coal (One Credit Course)

Course Objectives:

- To understand the importance and challenges associated with power generation from coal in the context of environmental sustainability.
- To explore various technologies and techniques for mitigating the environmental impact of coalbased power generation.
- To examine the potential of clean coal technologies and their application in reducing emissions from coal-fired power plants.
- To promote critical thinking and problem-solving skills in identifying innovative solutions for reducing the carbon footprint of coal-based power generation

Course content

Session 1

Basic aspects of thermal power generation: Power plant cycle, Fuels and its handling, ash handling, Turbine, Feed water heaters, Generator, Condenser, Cooling tower and its types etc.,

Session 2 &3

Types of fuel and its preparation, constituents of fuel and its effect on emission.

Furnace, types of burner, Fuels combustion in boiler — Coal, biomass, co-combustion in the boiler, combustion arrangement, Tangential firing, front and rear wall firing systems.

Session 4 & 5

Air requirement in boiler – Primary, Secondary air, Flue gas generation, Gas velocity, Ash formation, types of waste generation in a power plant, non hazardous, hazardous, waste storage, waste disposal.

Session 6 & 7

Pollutant formation in the boiler, SOx, NOx, CO2, Particulate matter etc. measurement of pollutants, instruments, emission norms, various measures to reduce emission.

Session 8 &9

Heat transfer mechanism in boiler and in auxiliaries like air pre heater, Economiser, Water wall, Super heater. Reheater etc...

Session 10 & 11

Particulate Matter formation and its control methods. - ESP, bag filter, ash handling systems, Dry and wet ash evacuation its effect on water consumption.

Session 12 & 13

SOx formation and its control techniques - different types, FGD, Wet FGD, Dry FGD, Ammonia FGD, effect of FGD on power plant operation, gypsum formation etc.,

Koni, Bilaspur - 495009 (C.G.)

Session 14 &15

NOx formation and its control techniques – different types, SCR, SNCR, combustion modification, effect of NOx control on power plant operation etc.,

Total Hours: 15

References

- 1. Power Generation from Solid Fuels (Power Systems) by Hartmut Spliethoff
- 2. Abatement systems for SOx, NOx, and particles Technical options by Stanley C. Wallin
- Environmental Impact of Power Generation, By The Royal Society of Chemistry, R.E. Hester, R. M. Harrison

Course outcomes

By the end of this course, students will be able to

- CO1 Explain the environmental impact of coal-based power generation, including greenhouse gas emissions, air pollution, and water usage.
- CO2 Identify and evaluate different technologies for reducing emissions and improving the efficiency of coal-fired power plants, such as advanced combustion techniques, flue gas desulfurization, and carbon capture.
- CO3 Understand the concept of clean coal technologies and their application in minimizing environmental pollutants.

Course Outcomes and their mapping with Programme Outcomes:

CO	PO											PSO			
	PO1	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	PO12	PSO1	PS02	PS03
CO1	1			1		2	3				1	2	2		
CO2	2					2	3				1	2	2		1
CO3	2		1			2	3				1	2	1		

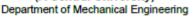
Weightage: 1-Sightly; 2-Moderately; 3-Strongly

Proposed Evaluation system

Industry Integrated course / one-credit course will be evaluated by the course instructor/department faculty concerned and will carry a total of 100 marks for internal assessment such as assignments, seminars, quizzes, projects, etc.

Course developed by

Dr. M. Muthuraman, M.E (NIT, Trichy), Ph.D. (Japan) Additional General Manager,



(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

Guru Ghasidas Vishwavidyalaya (A Central University)

CODE	COURSE NAME	Н	OURS F		CIA	SEA	CREDIT
		L	Т	Р			
MEUFTO1	Fundamentals of Fluid Mechanics	3	-	-	40	60	3

Course Objectives: The student shall

- 1 To familiarize with the properties of fluids and the applications of fluid mechanics
- 2 To formulate and analyze problems related to calculation of forces in fluid structure interaction.
- 3 To understand the concept of fluid measurement, types of flows and dimensional analysis
- 4 To understand boundary layer concepts

UNIT-1 Fundamentals

Fundamentals of Fluid Mechanics: Introduction; Applications; Concept of fluid; Difference between solids, liquids and gases; Concept of continuum; Ideal and real fluids; Fluid properties

UNIT-2 Fluid Statics

Fluid Statics: Concept of static fluid pressure; Pascal's law and its engineering applications; Hydrostatic paradox; Pressure distribution in a liquids

UNIT-3 Fluid Kinematics

Fluid Kinematics: Classification of fluid flows; Lagrangian and Euler flow descriptions; Velocity and acceleration of fluid particle; Local and convective acceleration; Normal and tangential acceleration; Flow rate and discharge mean velocity; One dimensional continuity equation; Continuity equation

UNIT-4 Fluid Dynamics

Fluid Dynamics: Euler's equation of motion; Bernoulli's equation using principle of conservation of energy; equation of motion and its applications to steady state ideal and real fluid flows

UNIT-5 Fluid Devices

Fluid devices; Conversion of mechanical to fluid energy - applications

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

Guru Ghasidas Vishwavidyalaya (A Central University) Department of Mechanical Engineering

TEXT BOOKS:

Yunus A Cengel, Fluid Mechanics-Fundamentals and Applications, McGraw Hill, 4th Edition, 2019

REFERENCE BOOKS:

- F.M. White, Fluid Mechanics, McGraw Hill, 9th Edition, 2022.
- P.N. Modi and S.M. Seth, Hydraulics and Fluid Mechanics Including Hydraulics Machines, SBH, 22nd Edition, 2019

WEB RESOURCES

- 1 https://nptel.ac.in/courses/112104118
- 2 https://onlinecourses.nptel.ac.in/noc21 me75/preview
- 3 https://edurev.in/courses/24694_Fluid-Mechanics-and-Hydraulic-Machines

Course Outcomes (COs): After the course completion, student shall be able to									
CO1	Understand the concept of fluids and their properties								
CO2	Distinguish various types of flows and learn flow measurement methods								
CO3	Apply the concept to solve the problems related to fluid statics								
CO4	Apply concepts to solve problems on fluid kinematics								
CO5	Demonstrate working principle of various fluid-based devices								

	_														
	PO												PSO		
lõ	Р	P	P	P	Р	Р	Р	Р	Р	PO	PO	PO	PS	PS	PS
U	01	02	О3	04	O5	06	07	08	09	10	11	12	01	02	O3
С	3	2	1										2	1	1
01															
С	3	2	2										3	1	1
02															
С	3	2	2										3	1	1
03															
С	3	2	1										2	1	1
04															
С	3	2	1										2	1	1
05															