Guru Ghasidas Vishwavidyalaya (A Central University) School of Studies of Engineering and Technology Department of Civil Engineering, B.Tech , 8th Semester End Semester Examination (2024-25)

Traffic Engineering (CE208TPE05D)

Max. Marks: 70

Note:

- 1. The question paper consists of 2 sections.
- 2. All questions in "section A" are mandatory comprising of 2 marks each.
- 3. "Section B" consists of 5 questions of 10 marks each.
- 4. Write the answers for both the sections (A & B) separately.

	Section A					
All questions are mandatory $(10 \times 2 = 20)$						
1.	Mention at least four scopes of traffic engineering.					
2.	What do you mean by a design driver? Outline few characteristics of design driver.	CO-1				
3.	Differentiate between time mean speed and space mean speed.	CO-2				
4.	Explain saturation flow rate and saturation headway.	CO-2				
5.	How can you eliminate the dilemma zone at a signalized intersection?	CO-3				
6.	List out various methods for signal design.	CO-3				
7.	Mention ill effects of parking.	CO-4				
8.	How the detrimental effects of parking could be mitigated?	CO-4				
9.	Write a short note on Psychological effect of noise.	CO-5				
10.	List our some majors pollutant which are in the form of exhaust gas.	CO-5				

	Section B								
	Attempt any 2 parts out of 3 from each question $(5 \times 10 = 50)$								
1.a.	a. What are the functions of traffic engineering?								
1.b.	Outline the dynamic characteristics of vehicles. A vehicle travelling at 120 km/h	CO-1, BTL-1							
	speed, stopped within 2.5 seconds after the application of brakes. Determine the								
	average skid resistance.								
1.c.	Explain various driver characteristics. A driver with 6/9 vision can see an object	CO-1, BTL-2							
	from 69 m distance. What is the distance that a normal person can see the								
	object? What is the distance a design driver can recognize the object?								
2.a.	Explain in detail about highway capacity and level of service along with their	CO-2, BTL-2							
	classifications.								

2.b.	What were the limitations of Greenberg and Underwood macroscopic traffic											CO-2, BTL-3		
	models? Derive the expression for optimal traffic flow using Greenshields model, and draw neat diagrams to show the variations among traffic flow, speed													
	and density.													
2.c.	Briefly	-	n, spa	ice me	an spe	ed, ti	me me	ean s	speed, ti	raffic v	volum	e and	traffic	CO-2, BTL-2
2	density.			1 .1	1'1				11 1	• ,		0.D.		CO 2 DEL 2
3.a.	What do	-		-				_						
	equation for the required amber time in order to eliminate the dilemma zone at the intersecting zone.													
3.b.			_		recon	mend	lations	for	the des	ign of	traffi	c sign	s List	CO-3, BTL-2
0.0.	Outline at least four IRC recommendations for the design of traffic signs. List out various methods of signal designing and explain the Webster method of													
	signal designing.													
3.c.	A four-legged right angled intersection is to be signalized with a fixed time two										CO-3, BTL-5			
	phase s													
	The tim		-						_			_		
	cycle time and apportion the green times in two phases with neat diagram.													
	Design		r	Nort	n	2	South		E	ast		Wes	t	
	flow in PCU/hour			1000		500		800			700			
		ration												
	flow in			2700		2000		3300			3000			
		/hour												
4.a.	Outline						-	_	_					
	neat diagram showing all the required dimensions including computation of													
4.b.	number of parking bays. From an in-out survey conducted for a parking area consisting of 40 bays, the										CO-4, BTL-5			
4.0.														· · · · · · · · · · · · · · · · · · ·
	initial count was found to be 25. Table gives result of survey. The numbers of vehicles coming in and out of the parking lot for a time interval of 5 minutes is													
	as shown in the table below. Determine the accumulation, total parking load,													
	average occupancy and efficiency of parking lot.													
	Time	5	10	15	20	25	30	35	40	45	50	55	60	
	In	3	2	4	5	7	8	2	4	6	4	3	2	
4	Out	2	4	2	4	3	2	7	2	4	1 2 E	3	5	
4.c.	What do you understand by peripheral parking schemes? Explain briefly various types of schemes under peripheral parking.									CO-4, BTL-2				
5.a.	Outline and briefly discuss the detrimental effects of traffic on the environment.									CO-5, BTL-2				
5.b.	Discuss the various measures for controlling air pollution.									CO-5, BTL-2				
5.c.	Discuss the various techniques to control the traffic noise.									CO-5, BTL-2				
	1													

विभागाध्यक्ष HOD सिहित इंजीनियरी विभाग Department of Civil Engineering प्रो.सं.गु.चा.विश्वविद्यालय, बिलासपुर (छ.मं.) I.T., G.G.V. Bilaspur (C.C.)

Pas