SELF DRIVING CAR- AI AND NEURAL NETWORK

Project-III - (IT208PPC31) report submitted to
Guru Ghasidas Vishwavidylaya
in partial fulfilment for the award of the degree of
Bachelor of Technology

in

Information Technology

by

Telu Sai Srinivasa Naidu, Amme Manoj, Kommeta Vikas (21036159, 21036112, 21036129)

Under the supervision of Dr. Amit Dewangan

Department of Information Technology
Guru Ghasidas Vishwavidylaya
April 03 ,2025
April, 2025

DEPARTMENT OF INFORMATION TECHNOLOGY GURU GHASIDAS VISHWAVIDYLAYA BILASPUR - 495009, INDIA

CERTIFICATE

This is to certify that the project report entitled "SELF DRIVING CAR- AI AND NEURAL NETWORK" submitted by Telu Sai Srinivasa Naidu, Amme Manoj, Kommeta Vikas (Roll No. 21036159, 21036112, 21036129) to Guru Ghasidas Vishwavidylaya towards partial fulfilment of requirements for the award of degree of Bachelor of Technology in Information Technology is a record of bonafide work carried out by him under my supervision and guidance during April 03,2025.

Date: April 03, 2025

Place: Bilaspur

Dr. Manoj Kumar Choubey

Head of Department

Deptartent of IT Guru Ghasidas Vishwavidylaya Dr. Amit Dewangan
Department of Information Technology
Guru Ghasidas Vishwavidylaya

Bilaspur - 495009, India

Abstract

Name of the student: Telu Sai Srinivasa Naidu, Amme Manoj, Kommeta

Vikas

Roll No: 21036159, 21036112, 21036129

Degree for which submitted: Bachelor of Technology

Department: Department of Information Technology

Thesis title: SELF DRIVING CAR- AI AND NEURAL NETWORK

Thesis supervisor: Dr. Amit Dewangan

Month and year of thesis submission: April, 2025

The advancement of autonomous driving technology is bringing a new wave of transformation, connecting people and places while reducing dependence on human-driven vehicles. However, developing a fully autonomous car that can drive itself in varied and dynamic environments presents several challenges. Traditional approaches rely heavily on predefined rules and rigid programming, which limit the system's ability to adapt to new situations. Autonomous driving systems must not only detect and interpret sensory data in real-time but also make complex decisions that account for safety, efficiency, and adaptability. To address these challenges, this project explores the NeuroEvolution of Augmenting Topologies (NEAT) algorithm, a genetic algorithm that evolves artificial neural networks. Unlike conventional neural networks with fixed structures, NEAT adapts its structure and weight connections based on a fitness function, creating an ever-evolving and increasingly capable driving model.

NEAT allows the car to "learn" driving skills through successive generations, using a fitness score based on distance traveled and collision avoidance.

Over time, the car improves its navigation skills and decision-making, becoming more adept at handling a variety of driving scenarios. By enabling real-time decision-making, NEAT acts as a bridge between theoretical models and practical application, showing how AI can be harnessed to solve complex driving problems. Through this project, we aim to develop a self-driving car that not only navigates autonomously but also evolves and improves without direct human intervention. This research demonstrates the potential of adaptive, learning-based driving systems to make transportation safer and more accessible, paving the way for a future where AI-driven vehicles enhance everyday life, red accidents, and connect people with greater ease.

Date: April,2025

(Telu Sai Srinivasa Naidu, Amme Manoj, Kommeta Vikas)

Place: Bilaspur

(21036159, 21036112, 21036129)