Report On Internship Training Programme (OIP-2025)

Chemical Process Technology

Submitted in Partial Fulfilment of the Requirements for the mandatory Industrial Internship training

Programme

Submitted by:

Aayush Kumar

Guru Ghasidas Vishwavidyalaya

Dates: 5th June to 15th July, 2025

Indian Institute of Chemical Engineers(IIChE)

Dr. H. L. Roy Building, Jadavpur University Campus,
188 Raja Subodh Chandra Mullick Road, Kolkata 700 032

www.iiche.org.in / iichehqfb@gmail.com/director.ti@iiche.org.in

Certificate from the IIChE

This is to certify that Aayush Kumar from GURU GHASIDAS VISHWAVIDYALAYA successfully completed online summer internship programme in our organization. The matter embodied in this report is a genuine to the best of our knowledge and belief and has not been submitted before, neither to this Institute nor to any other organization for the fulfilment of the requirement of any course of study. During her internship tenure in IIChE, we found her as a hardworking, sincere, and diligent person and her behaviour and conduct was good. We wish her all the best for her future endeavour.

Chief Coordinator, OIP-2025

OIP-2025

Preface

Objectives of Online Internship Program

- Assist the student's development of employer-valued skills such as teamwork, communications and attention to learn Engineer's responsibilities and ethics.
- Enhance and/or expand the student's knowledge of a particular area(s) of skill.
- Expose the student to professional role models or mentors who will provide the student with support in the early stages of the internship and provide an example of the behaviours expected in the intern's workplace.
- To familiarize with various materials, processes, products and their applications along with relevant aspects of technology and troubleshooting.
- To gain experience in writing technical report/project.

Course Outcome

- Provides basic idea of different real life industrial processes, problems, trouble shooting, decision making and preventive maintenance techniques and professional culture of industry, work ethics and attitudes in industry. The different live situation, trouble shooting and modern technological application.
- Provides course materials to the students for reference (in PDF format). The study materials have been shared with the students through IIChE for its record.
- Improves to deal with the assignments which has been given for the solution / conceptual ideas based on discussion during the tutorial class.
- Helps to understand the importance of the application of modern tools for the industrial automation / up-gradation / scale-up.
- Develops conceptual theory in the regular class room discussion and its application in real-life industrial problem resolution.
- Gives primary idea to analyse Case studies based on real life application.

SUMMER TRAINING REPORT

AT

NATIONAL THERMAL POWER CORPORATION (SIPAT)

ON

WATER CHEMISTRY FOR POWER PLANT WITH SPECIFIC REFERENCE TO SUPERCRITICAL BOILER

(June 2025-July 2025)

(SUBMITTED BY)

ABHISHEK KUMAR

(ROLL NUMBER: 22021103)

(ENROLLMENT NUMBER: GGV/22/01503)

(2025-26)

Department of Chemical engineering
GURU GHASIDAS VISHWAVIDYALAYA
BILASPUR (C.G.) 495009

(A Central Universities established by Central Universities Act, 2009)

TABLE OF CONTENT

- 1. Abstract
- 2. Introduction
- 3. About organisation
- 4. Description of Supercritical Boiler
- 5. All Volatile Treatment (AVT)
- 6. Oxygenated Treatment (OT)
- 7. Comparison between AVT and OT Treatment
- 8. Conclusion

1. ABSTRACT

Water chemistry plays a critical role in ensuring the efficiency, safety, and longevity of power plant operations, particularly in supercritical boilers used in modern thermal power plants like NTPC Sipat Super Thermal Power Station. Supercritical boilers operate at high temperatures and pressures, necessitating stringent water quality to prevent corrosion, scaling, and fouling in boiler tubes and turbine system. This report explores the significance of maintaining the key parameters of water such as pH, dissolved oxygen, and conductivity to enhance thermal efficiency downtime. Emphasis is placed on the unique challenges posed by supercritical boiler systems, including the need of ultra-pure water to withstand extreme operating conditions and implementation of advanced treatment process like AVT (All Volatile Treatment), OT (Oxygenated Treatment), Phosphate Treatment, demineralisation and chemical dosing. By analysing the water chemistry practises at NTPC Sipat, which sources water from the Hasdeo River, this study highlights the critical relationship between water quality and operational performance, underscoring the importance of robust water management strategies in achieving sustainable and efficient power generation.

Training Certificate

REGIONAL LEARNING INSTITUTE, NTPC, SIPAT क्षेत्रीय ज्ञानार्जन संस्थान, एनटीपीसी, सीपत CERTIFICATE OF VOCATIONAL TRAINING - 2025 व्यावसायिक प्रशिक्षण प्रमाण पत्र - 2025

THE CERTIFICATE IS AWARDED TO

ABHISHEK KUMAR

VT Roll No -VT25CHEM006 Branch - CHEMICAL ENGINEERING

Name of College/Institute - GURU GHASIDAS VISHWAVIDYALAYA, BILASPUR

For satisfactorily completing Vocational Training at NTPC, Sipat, Bilaspur for a period of four weeks from 16/06/2025 to 15/07/2025. The participant has successfully completed the course and has also completed the project assigned to him/her as part of this course. We wish him/her a bright and successful future.

Ref No. RLI/SIPAT/VT/CERT/2025/VT25CHEM006

Nakka Ramesh Sr. Manager (RLI)

KV Prasad GM & Head (RLI-Simulator)

FUEL FROM WASTE PLASTIC

A Project Report

In Fulfilment of the Requirement for Award of Degree of

Bachelor of Technology of the 3rd Year in Chemical Engineering

Submitted By

Abhishek Singh (22021104)

Under the Guidance of

Dr. Prateek Khatri

Assistant Professor

DEPARTMENT OF CHEMICAL ENGINEERING

NATIONAL INSTITUTE OF TECHNOLOGY, ROURKELA (ODISHA)

July 2025

CERTIFICATE

Certified that the Major Project Report entitled "FUEL FROM WASTE PLASTIC" submitted by Abhishek Singh & Vineet Yadav of B.Tech. 7th Semester, in partial fulfillment of the requirements for the award of degree in Bachelor of Technology (B. Tech) in Chemical Engineering, is according to the students their own investigation carried out by them in the Department of Chemical Engineering, School of Studies of Engineering & Technology, GGV, during the session 2025-26.

Dr. Amit Jain

HoD

Department of Chemical Engineering SoS of Engineering & Technology, GGV Dr. Prateek Khatri
Supervisor
Department of Chemical Engineering
National Institute of Technology, Rourkela

ABSTRACT

Plastic waste poses a significant environmental challenge due to its non-biodegradable nature and increasing accumulation. This project explores the conversion of waste plastic into valuable fuel through the process of pyrolysis, a thermochemical decomposition method conducted in an oxygen-free environment at elevated temperatures. The main objective is to address the dual issues of plastic pollution and energy demand by transforming commonly discarded plastics such as polypropylene (PP) and polyethylene (PE) into liquid fuel, gas, and char. The experimental setup involves shredding, cleaning, and feeding plastic waste into a reactor, followed by heating to temperatures between 300–500°C. The resulting vapors are condensed to yield oil, which exhibits properties similar to conventional diesel. The process not only reduces plastic waste but also produces a cost-effective and sustainable alternative fuel, with potential for broad industrial and commercial application[2][6][8].

LIST OF FIGURES

Figure No.	Description	Page No.
Fig. 1.1	Percentage of different types of waste plastic	04
Fig. 2.1	Waste plastic	05
Fig. 2.2	Final product Waste Palstic	05
Fig. 3.1	Experiment Setup for waste to plastic	06
Fig. 5.1	XRD Device	06
Fig. 5.2	SXRD Device	07
Fig. 2.3.1.1	SEM Device	08

TABLE OF CONTENT Page Number Content Certificate 2 Acknowledgement 3 Abstract List of Figures 4 Table of Content 5 08 1. Introduction 1.1 Types of plastic 09 2. Methodology 11 3. Experimental setup for pyrolysis 13

15

18

4 Characterization Technique

5 Reference

SUMMER TRAINING REPORT

AT

NATIONAL THERMAL POWER CORPORATION (SIPAT)

ON

WATER CHEMISTRY FOR POWER PLANT WITH SPECIFIC REFERENCE TO

SUPERCRITICAL BOILER

(June 2025-July 2025)

(SUBMITTED BY)

ADARSH KUMAR

(ROLL NUMBER: 22021105)

(ENROLLMENT NUMBER: GGV/22/01505)

(2025-26)

Department of Chemical Engineering
GURU GHASIDAS VISHWAVIDYALAYA
BILASPUR (C.G.) 495009

(A Central University established by Central Universities Act, 2009)

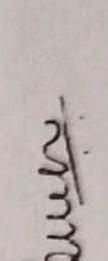
CONTENT

- 1. Abstract
- 2. Introduction
- 3. About organisation
- 4. Description of Supercritical Boiler
- 5. All Volatile Treatment (AVT)
- 6. Oxygenated Treatment (OT)
- 7. Comparison between AVT and OT Treatment
- 8. Conclusion

CERTIFICATE OF VOCATIONAL TRAINING - 2025 REGIONAL LEARNING INSTITUTE, NTPC, SIPAT क्षेत्रीय ज्ञानार्जन संस्थान, एनतीपीसी, सीपत व्यावसायिक प्राथिता प्रमाण पत्र - 2025

THE CERTIFICATE IS AWARDED TO ADARSH KUMAR

VT Roll No -VT25CHEM042


Branch - CHEMICAL ENGINEERING

VISHWAVIDYALAYA, BILASPUR Name of College/Institute - GURU GHASIDAS


Sipat, Bilaspur for a period of four weeks from 5/06/2025 to 15/07/2025. The participant has successfully completed the course and has also completed the project assigned to him/her as part of this course. We wish him/her a bright and successful future. or satisfactorily completing Vocational Training at NTPC,

FNO. RLI/SIPAT/VT/CERT/2025/VT25CHEM042

Nakka Ramesh Sr. Manager (RLI)

KV Prasad GM & Head (RLI-Simulator) A Internship Report

Submitted in partial fulfillment of the requirement of the degree of Bachelor Of Technology of the 4th Year

In

Chemical Engineering

Submitted by

Name

RollNo.

Adarsh P

22021106

DEPARTMENT OF CHEMICAL ENGINEERING
School Of Studies Engineering & Technology
GURU GHASIDAS VISHWAVIDYALAYA, BILASPUR (C.G.)
(A Central University Established By The Central University Act 2009 No. 25 of 2009)

July 2025

Table Of Contents

Acknowledgement(i)
Declaration(ii)
List of figures(v)
1. Introduction(1)
2. Company Profile(2)
3. Internship Activities(4)
4. Project Summar(8)
4.1. Objective of the Project(8)
4.1. Objective of the Projective and Boiler(8) 4.2. introduction to Water Chemistry and Boiler(8)
4.3. Effects of Poor Water Chemistry(8)
4.4 Water Treatment Process In Power Plants(9)
4.5. Cycle Chemistry Control Programs(10)
4.6. Other Key Topics Covered(10)

REGIONAL LEARNING INSTITUTE, NTPC, SIPAT क्षेत्रीय ज्ञानार्जन संस्थान, एनटीपीसी, सीपत

CERTIFICATE OF VOCATIONAL TRAINING - 2025

व्यावसायिक प्रशिक्षण प्रमाण पत्र - 2025

THE CERTIFICATE IS AWARDED TO

ADARSH.P

VT Roll No - VT25CHEM016 Branch - CHEMICAL ENGINEERING

Name of College/Institute - GURU GHASIDAS VISHWAVIDYALAYA, BILASPUR

For satisfactorily completing Vocational Training at NTPC, Sipat, Bilaspur for a period of four weeks from 16/06/2025 to 15/07/2025. The participant has successfully completed the course and has also completed the project assigned to him/her as part of this course. We wish him/her a bright and successful future.

Ref No. RLI/SIPAT/VT/CERT/2025/VT25CHEM016

Nakka Ramesh Sr. Manager (RLI)

KV Prasad GM & Head (RLI-Simulator)

GURU GHASIDAS VISHWAVIDYALAYA BILASPUR - 495009

Summer Internship Report

Internship From NTPC Sipat

On

Water Chemistry For Power Plants: with specific References Supercritical Boilers

Submitted by

Ajay Ghildiyal (22021107)

Guided by

Mr. Nakka Ramesh

DEPARTMENT OF CHEMICAL ENGINEERING School Of Studies Engineering & Technology

GURU GHASIDAS VISHWAVIDYALAYA, BILASPUR (C.G.)

(A Central University Established By The Central University Act 2009 No. 25 of 2009)

REGIONAL LEARNING INSTITUTE, NTPC, SIPAT क्षेत्रीय ज्ञानार्जन संस्थान, एनटीपीसी, सीपत CERTIFICATE OF VOCATIONAL TRAINING - 2025

व्यावसायिक प्रशिक्षण प्रमाण पत्र - 2025

THE CERTIFICATE IS AWARDED TO AJAY GHILDIYAL

VT Roll No -VT25CHEM010 Branch - CHEMICAL ENGINEERING

Name of College/Institute - GURU GHASIDAS VISHWAVIDYALAYA, BILASPUR

For satisfactorily completing **Vocational Training at NTPC**, **Sipat**, **Bilaspur** for a period of four weeks from 16/06/2025 to 15/07/2025. The participant has successfully completed the course and has also completed the project assigned to him/her as part of this course. We wish him/her a bright and successful future.

DATE -19/07/2025

Ref No. RLI/SIPAT/VT/CERT/2025/VT25CHEM010

Leun

Nakka Ramesh Sr. Manager (RLI) KV Prasad GM & Head (RLI-Simulator)

Table Of Contents

Acknowledgement(i)
Declaration(i	i)
List of figures(v	v)
1. Introduction(1	1)
2. Overview of water chemistry in thermal Power Plant(3	3)
3. Boiler Types(4	4)
4. Importance of water chemistry	(8)
5. Impurities in Boiler water(4)
6.Water Treatment Method(4	•)
7. Key water Parameters and limits(5))
8 Online monitoring and instrumention(6))
9.Case study(6)
10. Challenges and issues in water chemistry((7)
11. Corrosion mechanism in boilers(7)

12. Recommendation For Best Practices	(8)
13. Conclusion	(8)
14. References:	.(10).

List Of Figure

Figure No.	o. Particulars		
Figure 1	Impact of Impure water on Boiler	1	
Figure 2	Comparison of sub-critical, supercritical, and ultra-supercritical boilers and their corresponding pressures and temperatures.	3	
Figure 3	Block diagram showing the stages of water treatment in power plants.	5	

GURU GHASHIDAS VISHWAVIDYALAYA BILASPUR- 495009

Summer Internship Report

Internship Done in:

INDIAN INSTITUTE OF TECHNOLOGY (BHU) VARANASI- 221005

Assessment of Particulate Matter (PM₁₀, PM_{2.5}, PM₁) concentration and its Health-Relevant Oxidative Potential

Name: Akshat Pandey

Roll No.: 22021108

Branch: Chemical Engineering

Semester: - 7th

Guided By: - Prof R S Singh

Internship Duration: 10th May 2025 to 12th July 2025

Department of Chemical Engineering & Technology

INDIAN INSTITUTE OF TECHNOLOGY (BHU)

VARANASI-221005

CERTIFICATE

This is to certify that, project entitled "Assessment of Particulate Matter (PM₁₀, PM_{2.5}, PM₁) concentration and its Health-Relevant Oxidative Potential" has been prepared and submitted by Mr. Akshat Pandey. He successfully completed a report on training on Oxidative Potential using DTT assay from the 10 May to 12 July 2025. His performance for this program was satisfactory. He has undergone fair exposure of Bioremediation, processing analysis, and report preparation.

Di. Kam Sharan

Singh (Supervisor)

Department of Chemical Engineering & Technology

IIT (B.H.U.), Varanasi

TABLE OF CONTENTS

1. INTRODUCTION	1
1.1 Oxidative Potential (OP) with respect to Particulate Matter (PM)	2
2. LITERATURE REVIEW	4
3. METHODOLOGY	7
3.1. DTT Assay:	7
3.2. Methodology for DTT Assay:	7
4. RESULTS	10
5. CONCLUSION:	11
6. REFERENCES	12

भारतीय प्रौद्योगिकी संस्थान काशी हिन्दु विश्वविद्यालय

INDIAN
INSTITUTE OF
TECHNOLOGY
BANARAS HINDU UNIVERSITY

प्रशिक्षण एवं प्रस्थापना प्रकोष्ठ TRAINING AND PLACEMENT CELL VARANASI-221 005

Phone: (0542) 7165958, 7165959 Website: placement.iitbhu.ac.in E-mail: tpo@iitbhu.ac.in

No.: 4233

6th

8th

TRAINING CERTIFICATE

Name of the Father's Name of the Course	ame .MrA		Chaphiel	her's Name Mrs. Sh as Vish waw nical Eng. Sen	nester7.th
Week /	D	ate	Actual working days put in	Remarks	Signature of the Supervisor
Month	From	То		0 5 4:	1
1 st	17/05/204	18/05/2018	01	SATISFACTORY	.,
		25/06/2025	06	Do	4
2 nd					l:
3rd	26/05/2015	01/28/2022	06		
	100	08/06/2025	06	10-	L
70 -0 0					i/
5 th	09/06/2025	15/06/2025	06		μ
5	(200)	2014/2015	06	N	<u></u>

06

11

Other remarks, if any He Completed the Cassiful work more and dedicated

Signature of Head of the Department/
Coordinator of the School

रासायनिक अभियांत्रिकी एवं प्रौद्योगिकी विमाग

Dept, of Chemical langineering & Technology भारतीय केंद्रीमिकी संस्थान (का.हि.वि.) वानगरनी

Minut lasticute of Technology (BHU) Va

Training and Placement Cell
(with Seal)

(with Seal) ्नमन्वयंक/Coordinates प्रशिक्षण एवं प्रस्थापना पकाल

Training and Ascement भारतीय प्रोद्योगिकी मस्थान का ह

Indian Institute of Technology (1 वाराणसी/Varanasi -221005

S. Dube

Project report

on

Determination of system head for Overhead Storage Tank new makeup line towards optimising pump size

Prepared by	Ms. Amisha Kumari
Checked by	Pankaj P. Bhuse, PESS, RRSD, RG, BARC
Issued by	Vivek Mishra, Head Physistra RRSD RARCESS, RRSD BARCESS, RRSD RESIDENCE OF India
	BARCHER, SITSHEET HEAR OF Inches STEAR STEAR OF THE STEA

Bhabha Atomic Research Centre Research reactor Services Division Performance Evaluation and Safety Section

CERTIFICATE OF PROJECT COMPLETION

This is to certify that Ms Amisha Pandey, 3rd year chemical engineering student from Guru Ghasidas Vishwavidyalaya, Bilaspur has successfully completed her project work on "Determination of system head for Overhead Storage Tank new makeup line towards optimising pump size" under my guidance from dated 15th May 2025 to 30th June 2025.

We wish her the best wishes for her future endeavours.

Shri. Shibu Thomas

Head, Research reactor Services Division

शिबू थॉमस / SHIBU THOMAS अध्यक्ष, आरआरएसडी / Head, RRSD भारत सरकार / Government of India भाभा परमाणु अनुसंधान केंद्र / BARC ट्रॉम्बे, मुंबई / Trombay, Mumbai - 400 085 Shri. Vivek Mishra, Per I Vivek Mishra
Project Guide
Total Project Suide

Head, PESS, Research reactor Services

Division

Toject Guide

Head, PESS, Research reactor Services

Translation

Transla

Abstract

22222

600

222223

Dhruva is a 100 MW research reactor. It has three cooling stages to extract the heat from the reactor core during its operation and for decay heat removal during reactor shutdown. It uses heavy water as primary heat transport medium to safely remove heat and maintain reactor performance. Demineralised light water, used in secondary cooling loop receives heat from heavy water through intermediate heat exchangers. The heat from the secondary loop is transferred to sea water as UHS.

Dhruva has Over Head Storage Tank (OHST) and Underground Dump tank. Cooling water flows from OHST to dump tank after decay heat removal. To ensure continuous cooling, water from dump tank is pumped back to Overhead tank to make up the water level in OHST. It consists of two pipelines of sizes, 250 mm & 150 mm, two centrifugal pumps along with necessary valves and fittings.

Recently new makeup line has been installed and commissioned. It was observed that the desired flow of 3600 lpm is obtained by throttling discharge valves of pumps which is indicative of oversizing of piping. This project work is aimed to determine system head for the flowrate of 3600 lpm and to optimize pump sizing for the same.

The project work covers the detailed analysis of makeup line for the determination of length of pipeline, comprehensive hydraulic calculation, considering flow velocity, Reynolds number, friction factor using the Swamee-Jain equation, and resulting head loss at different flow rates. The analysis clearly indicates that the system head is 46 m against desired flow of 3600 lpm. For our desired flow of 3600 lpm and head of 46 m, it is validated that system head curve intersects with the pump performance curve for the impeller diameter of 380 mm.

Table of Contents

1.Introduction & project objective	1
2.Brief about system head and pump head	2
3.Brief about make up System and key components	
4.Methodology for system head calculation	
5.New pump sizing based on system head curve	8
6.Existing pump impeller diameter optimization	11
7.NPSH Analysis of the Pump and system	17
8.Conclusion & recommendation	20
	1
Figure 1 : System schematic for make-up system	2
Figure 2 : System head curve	2
Figure 3 : Pump performance curve	5
Figure 4: I vs Nre for 250 mm pipe	6
Figure 6: pump-5 system head vs flow rate	6
Figure 7: Pump-6 system head vs flowrate	7
Figure 8 : pump hydraulic power	7
Figure 9: hydraulic power variation with flow rate	8
Figure 9: hydraulic power variation with now rate	8
Figure 10: Impelier type selection based on res	10
Figure 12: Pump performance curves for diff impellers diameters	12
Figure 12: Pump performance curves for unit impeners didirect differences. Figure 13: Pump curves & system head curve	13
Figure 13: Pump curves & system head curve for diff impellers	15
Figure 14: pump curves & system head curve for diff impeners	16
Figure 15: Iso-efficiency curve for KFD-125/45 pump modern	17
Figure 16: NPSH graphical representation Figure 17 NPSHa and NPSHr margin	18
Figure 17 NPSHa and NPSHr margin	18
Figure 17 NPSHa and 14 571 Magazine Figure 18: NPSHa variation with flowrates for pump-5 piping	19
Figure 19: NPSHa variation with flowrate for pump-6 piping	19
Figure 19: NFSHa variation William NPSHa and NPSHr (for impeller diameter of 469 / 380 mm)	

GURU GHASIDAS VISHWAVIDYALAYA BILASPUR - 495009

Summer Internship Report

Internship From NTPC Sipat

On

How To Achieve Zero Liquid Discharge In Power Plant

Submitted by

Ankit Raj (22021110)

Guided by

Mr. Nakka Ramesh

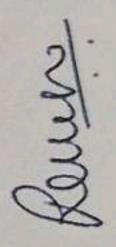
DEPARTMENT OF CHEMICAL ENGINEERING
School Of Studies Engineering & Technology
GURU GHASIDAS VISHWAVIDYALAYA, BILASPUR (C.G.)
(A Central University Established By The Central University Act 2009 No. 25 of 2009)
July 2025

Table Of Contents

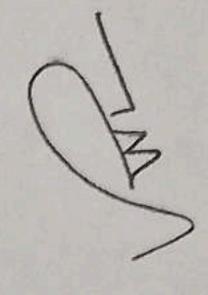
GURU GHASIDAS VISHWAVIDYALAYA BILASPUR - 495009	I
ACKNOWLEDGEMENT	П
DECLARATION 1. INTODUCTION	1
1. INTODUCTION	2
1. INTODUCTION	4
 COMPANY PROFILE INTERNSHIP ACTIVITIES 	7
 INTERNSHIP ACTIVITIES PROJECT SUMMARY 	7
4. PROJECT SUMMARY	7
4.1. Objective of the Project	7
1 D - varga Ocmocic	
4 7 3 4 1 Die Deactor (MRR)	
4.6 Solvent Extraction and Stripping	
4.7 Evaporation Technologies	9
4.9 Agitated Thin Film Dryer (ATFD)	10
4 o Cl. II in 7I D Implementation	
4.10 C Study NTPC Sinat Supercritical Power Plant	11
4 11 Conclusion & Findings	11
5 LEARNING OUTCOMES	12
Canalusian	13
7. REFRENCES	14

AINING - 2025 PAR, APC, SIPAT **पЯ** - 2025 OF VOCATIONAL व्यावसायिक प्राशिष्ण प्रमाण REGIONA

CERTIFICATE IS AWARDED TO ANKIT RAJ


Branch - CHEMICAL ENGINEERING

Name of College/Institute - GURU GHASIDAS VISHWAVIDYALAYA, BILASPUR


completed the project assigned to him/her as part of this course. We wish him/her a bright and successful future. For satisfactorily completing Vocational Training at NTPC, Sipat, Bilaspur for a period of four weeks from 16/06/2025 to 15/07/2025. The participant has successfully completed the course and has also

Ref No. RLI/SIPAT/VT/CERT/2025/VT25CHEM018

Nakka Ramesh Sr. Manager (RLI)

KV Prasad GM & Head (RLI-Simulator)

LAND NATURAL GAS CBM

1st Floor, H.S.C.L. Building Near Naya More, Bokaro-827001

a student of SANKUR This is to certify that Mr./Me. ... GURU GHASIDAS VISWAVIDVALAYA BILASPUR (GG)

has undergone Summer / Winter / Industrial Training at ONGC from 13:05:2025 to 27, 06:2025

Work on CBM GAS PROCESSING He/She has successfully completed his / ber Project

of B. TECH. CHEM. ENGEduring & CO2 REMOVAL SYSTEM" in discipline

assigned the ere keen the Training, he/she took

vours and life. We wish him/her all success in his/her academic endea

Jate: 27/06/2025

Place: Bokaro

CGM (HR)-Head HR

ONGC CBM ASSET, BOKARO

Summer Industrial Training Report on "CBM GAS PROCESSING AND CO2 REMOVAL SYSTEM"

(13.05.2025 - 27.06.2025)

ANKUR KUMAR GGV/22/01511 CHEMICAL ENGINEERING

SCHOOL OF STUDIES OF ENGINEERING AND TECHNOLOGY GURU GHASIDAS VISHWAVIDYALYA, BILSAPUR (C.G), 495009

TRAINEE DETAILS

Submitted to:

NAME	REKHA GORAI
POST	EE (PRODUCTION)
ORGANIZATION	ONGC, CBM ASSET BOKARO

Performed by:

NAME	ANKUR KUMAR
COLLEGE	GURU GHASIDAS VISWAVIDYALAYA, BILASPUR (C.G)
ROLL NO.	GGV/22/01511
BRANCH	CHEMICAL ENGINEERING
YEAR/ SEMESTER	3rd YEAR/6th SEM
REPORT TITLE	CBM GAS PEOCESSING AND CO2 REMOVAL SYSTEM
DURATION	13.05.25 - 27.06.25

CONTENTS

1. Introduction	6-14
1.1 ONGC- a Maharatna	6-7
1.2 Sources of Methane (CH ₄)	8-9
1.3 Overview of CBM Asset	10
1.4 Coal Bed Methane (CBM)	11-12
1.5 CBM Recovery	13
1.6 CBM Resources in India	14
2. Work Services	15–28
2.1 Sub Surface Team	15-16
2.2 Drilling and Cementing Services	17-20
2.3 Well Services	21-25
2.4 Chemical Laboratory	26-27
2.5 Health Safety and Environment (HSE)	28
3. PNGRB Rules	29
4. Site Visit – 4.1 Well site Bokaro (Gomia) 4.2 Work Over Rig 4.3 GCS Jharia 4.4 GCS Bokaro 4.5 Gas Dehydration Unit 4.6 HP Compression and CO ₂ removal system	30- 39
5. Study of CO2 Removal Processes	40-44
5. Safety Precautions [Do's (☑) & Don'ts (☒)]	45-46
6. Conclusion	47

GURU GHASIDAS VISHWAVIDYALAYA BILASPUR - 495009

Summer Internship Report

Internship From NTPC SIPAT

On HOW TO ACHIEVE ZERO LIQUID DISCHARGE IN POWER PLANTS

Submitted by

Anwar Sahil Ali (22021112)

Guided by

Mr. Nakka Ramesh

DEPARTMENT OF CHEMICAL ENGINEERING School Of Studies Engineering & Technology GURU GHASIDAS VISHWAVIDYALAYA, BILASPUR (C.G.)

(A Central University Established By The Central University Act 2009 No. 25 of 2009)

Table Of Contents

ACKNOWLEDGEMENT	I
DECLARATION	II
1. INTRODUCTION	2
2. COMPANY PROFILE	3
3. INTERNSHIPACTIVITIES	5
4. PROJECT SUMMARY	7
4.1. Objective of the Project	7
4.2. Wastewater Characterization at the Power Plant.	7
4.2.1. Major Wastewater Streams	7
4.2.2. Cooling Tower Blowdown	7
4.2.3. Boiler Blowdown	7
4.3. Analysis of the Existing Effluent Treatment Plant (ETP)	8
4.3.1. Conventional ETP Process Flow	8
4.3.2. Performance Evaluation	8
4.3.3. Identifying the Gaps for ZLD Compliance	8
4.4. Advanced Technologies for ZLD.	8
4.4.1. The Integrated ZLD System	8
4.4.2. Pre-Treatment	8
4.4.3. Reverse Osmosis (RO)	9
4.4.4 Thermal Evaporation (Evaporators)	9
4.4.5 Crystallization	9
4.5. Conclusion	9
5. LEARNING OUTCOMES	10
6. CONCLUSION	11
7. REFERENCES	12

REGIONAL LEARNING INSTITUTE, NTPC, SIPAT क्षेत्रीय ज्ञानार्जन संस्थान, एनटीपीसी, सीपत CERTIFICATE OF VOCATIONAL TRAINING - 2025

व्यावसायिक प्रशिक्षण प्रमाण पत्र - 2025

THE CERTIFICATE IS AWARDED TO

ANWAR SAHIL ALI

VT Roll No -VT25CHEM022 Branch - CHEMICAL ENGINEERING

Name of College/Institute - GURU GHASIDAS VISHWAVIDYALAYA,BILASPUR

For satisfactorily completing **Vocational Training at NTPC**, **Sipat**, **Bilaspur** for a period of four weeks from 16/06/2025 to 15/07/2025. The participant has successfully completed the course and has also completed the project assigned to him/her as part of this course. We wish him/her a bright and successful future.

DATE -19/07/2025

Ref No. RLI/SIPAT/VT/CERT/2025/VT25CHEM022

Remis

Nakka Ramesh Sr. Manager (RLI) KV Prasad GM & Head (RLI-Simulator)

GURU GHASIDAS VISHWAVIDYALAYA BILASPUR - 495009

Summer Internship Report

Internship From NTPC Sipat

On

Water Chemistry For Power Plants: with specific Reference to Supercritical Boilers

Submitted by

Guided by

Aryan Singh (22021113)

Mr. Nakka Ramesh

DEPARTMENT OF CHEMICAL ENGINEERING School Of Studies Engineering & Technology GURU GHASIDAS VISHWAVIDYALAYA, BILASPUR (C.G.)

(A Central University Established By The Central University Act 2009 No. 25 of 2009)

July 2025

REGIONAL LEARNING INSTITUTE, NTPC, SIPAT क्षेत्रीय ज्ञानार्जन संस्थान, एनटीपीसी, सीपत CERTIFICATE OF VOCATIONAL TRAINING - 2025 व्यावसायिक प्रशिक्षण प्रमाण पत्र – 2025

THE CERTIFICATE IS AWARDED TO

ARYAN SINGH

VT Roll No - VT25CHEM013 Branch - CHEMICAL ENGINEERING

Name of College/Institute - GURU GHASIDAS VISHWAVIDYALAYA, BILASPUR

For satisfactorily completing Vocational Training at NTPC, Sipat, Bilaspur for a period of four weeks from 16/06/2025 to 15/07/2025. The participant has successfully completed the course and has also completed the project assigned to him/her as part of this course. We wish him/her a bright and successful future.

Ref No. RLI/SIPAT/VT/CERT/2025/VT25CHEM013

Nakka Ramesh Sr. Manager (RLI) KV Prasad GM & Head (RLI-Simulator)

Table Of Contents

ACKNOWLEDGEMENT	I
DECLARATION	II
Table Of Content	III
List of Figures	
Fig.1: NTPC Limited SIPAT	2
Fig.2: Three day's of plant visit	6
1. INTRODUCTION	1
2. COMPANY PROFILE	2
3. INTERNSHIP ACTIVITIES	4
4. PROJECT SUMMARY	7
4.1. Objective of the Project	7
4.2. Introduction to Water Chemistry and Boilers	7
4.3. Effects of Poor Water Chemistry	7
4.3.1.Corrosion.	8
4.3.2.Scaling and Deposits	8
4.3.3.Flow Accelerated Corrosion.	8
4.4. Water Treatment Process in Power Plants	8
4.4.1.Pre-Treatment	8
4.4.2.Demineralization (DM)	8
4.4.3.Makeup Water Treatment	9
4.4.4.Condensate Polishing Unit (CPU)	9
4.5. Cycle Chemistry Control Programs	9
4.5.1.AVT(R)	9
4.5.2.AVT(O)	9
4.5.3.OT	9
4.6. Other Key Topics Covered	9
4.6.1.Condensate Polishing.	9
4.6.2.Steam Purity	10
4.6.3.Boiler Blowdown	10
4.7. Conclusion and Findings	10
5. LEARNING OUTCOMES	11
6. CONCLUSION	12
7 REFERENCES	13

GURU GHASIDAS VISHWAVIDYALAYA BILASPUR (C.G.)

A

PROJECT REPORT

ON

"Ammonia Recovery and Slippage Mitigation in Coke Oven Gas Treatment: A Comparative Study and Major to Reduce it"

Submitted in partial fulfilment of the requirement for the award of

BACHELOR OF TECHNOLOGY

IN

CHEMICAL ENGINEERING

Guided by:

Mr. Anand Shukla

GM, CO & CCD

Submitted by:

Astha Agrawal

(22021114)

DEPARTMENT OF CHEMICAL ENGINEERING
School Of Studies Engineering & Technology
GURU GHASIDAS VISHWAVIDYALAYA, BILASPUR (C.G.)
(A Central University Established By The Central University Act 2009 No. 25 of 2009)

Table of Content

S.NO.	TOPICS	PAGE NO.
1.	An overview of sail (steel authority of India limited)	1-2
2.	An overview of Bhilai steel plant (BSP)	3-5
3.	Coke oven and coal chemical Department	6-10
4.	COG generation and characteristics	10-11
5.	Coal chemical department	12-14
6.	Tar separation plant	15
7.	Primary gas cooler	15-17
8.	Electrostatic tar precipitator	17-18
9.	Gas exhauster	18-19
10.	H ₂ S/NH ₃ scrubber	19-22
11.	R2 unit or Distillation unit	23-25
12.	Ammonia cracking / Sulfur recovery	25-27
13.	Biochemical oxygen demand plant (BOD)	28
14.	Ammonia slippage in COG complete analysis	28-30
15.	Operational and environmental challeng posed by ammonia slippage	
16.	Solutions and strategies for ammonia remove from COG	7al 31-33
17.	Conclusion and future aspects	33-34

BHILAI STEEL PLANT भिलाई इस्पात संयंत्र

प्राजक्ट

HUMAN RESOURCES DEVELOPMENT DEPARTMENT मानव संसाधन विकास विभाग

CERTIFICATE Khinihk

प्रमाणित किया जाता है कि श्री / कुमारी This is to certify that Shri / Ku.Astha.Agrawal. Regn. No. P-25/5325 पजीयन क्र

.Sixth.... Sem., student of सेमेस्टर विद्यार्थी (Chemical) Bilaspur College / Institute

कालेज / संस्थान

has undergone project based training from09/06/2025... ने अवकाश कालीन प्रशिक्षु के रूप में दिनांक तक प्रशिक्षण प्राप्त किया to 05/07/2025

Project . Repart.on. "Ammonia. recavery. and. slippage. miligation. in. coke. aven. gas. treatment. A comparative study and major to reduce it"

His / her performance during the training period has been ... इस अवधि में उनका कार्य निष्पादन

Bhilai, Dated भिलाई, दिनांक

प्रभारो (प्रशिक्षण)

Incharge (Training)

NTPC SIPAT SUMMER INTERNSHIP REPORT

A Project Report: -

In Partial Fulfilment of the Requirement for Award of Degree of Bachelor of Technology of the 4th Year in Chemical Engineering

Submitted By: -

Bishal Sahani (22021116)

Under the Guidance of: -

Mr. Nakka Ramesh

Vocational Training 2025 NTPC Sipat Thermal Power Station

DEPARTMENT OF CHEMICAL ENGINEERING SCHOOL OF STUDIES OF ENGINEERING & TECHNOLOGY

GURU GHASIDAS VISHWAVIDYALAYA, BILASPUR (C.G.)

JULY 2025

TABLE OF CONTENT

	I
DECLARATION	
ACKNOWLEDGEMENT	II
TABLE OF CONTENT	01
1. INTRODUCTION	01
2. OVERVIEW OF NTPC SIPAT	02
3. PROJECT SUMMARY	
3.1. IMPORTANCE OF CHEMICALS IN POWER PLANTS	03
CHEMICAL LISAGE	03
3.2. DETAILED STUDY OF CHEMICAL USAGE	03
3.2.1. Water Treatment Chemicals	04
3.2.2. Combustion and Emission Control Chemicals	04
3.2.3. Cleaning and Maintenance Chemicals	04
3.3. HAZARDOUS CHEMICALS AND THEIR RISKS	
3.4. CHEMICAL SAFETY PRACTICES	
3.5. HAZARDOUS WASTE MANAGEMENT	05
3.6. INNOVATIVE APPROACHES AND GREEN ALTERNATIVE	
3.7. REGULATORY FRAMEWORK	06
4. OBSERVATIONS AND LEARNINGS	07
5. CONCLUSION	08
6. REFERENCES	09

REGIONAL LEARNING INSTITUTE, NTPC, SIPAT क्षेत्रीय ज्ञानार्जन संस्थान, एनटीपीसी, सीपत CERTIFICATE OF VOCATIONAL TRAINING - 2025 व्यावसायिक प्रशिक्षण प्रमाण पत्र – 2025

THE CERTIFICATE IS AWARDED TO

BISHAL SAHANI

VT Roll No - VT25CHEM035 Branch – CHEMICAL ENGINEERING

Name of College/Institute - GURU GHASIDAS VISHWAVIDYALAYA, BILASPUR

For satisfactorily completing Vocational Training at NTPC, Sipat, Bilaspur for a period of four weeks from 16/06/2025 to 15/07/2025. The participant has successfully completed the course and has also completed the project assigned to him/her as part of this course. We wish him/her a bright and successful future.

Ref No. RLI SIPATATI CERT 2025 AT 25 CHEM035

Leur

Nakka Ramesh Sr. Manager (RLI) KV Prasad GM & Head (RLI-Simulator)

SAIL, IISCO STEEL PLANT, BURNPUR, WEST BENGAL

Summer Industrial Training Report on "Blast Furnace Coke properties and the influence on Off-gas Dust"

(19.05.2025 - 14.06.2025)

BUNTY KUMAR RAJAK GGV/22/01517 CHEMICAL ENGINEERING

SCHOOL OF STUDIES OF ENGINEERING AND TECHNOLOGY GURU GHASIDAS VISHWAVIDYALYA, BILSAPUR (C.G), 495009

स्टील अधॉरिटी ऑफ इण्डिया लिमिटेड STEEL AUTHORITY OF INDIA LIMITED इस्को इस्पात संयंत्र IISCO STEEL PLANT मानव संसाधन-ज्ञानार्जन एवं विकास केन्द्र HR-LEARNING & DEVELOPMENT CENTRE

Ref. No.: HR- L&D/ 2025/576

Date: 14.06.2025

This is to certify that Shri Bunty Kumar Rajak

Student of B. Tech. (Chemical)

Guru Ghasidas Vishwavidyalaya, Bilaspur

During the training period, he/she has been given exposure to various processes in major shops like Coke Ovens, Sinter plant, Blast Furnace, Basic Oxygen Furnace, Continuous Casting plant, Mills L other Allied maintenance / services.

His/Her attendance was regular and conduct was found to be satisfactory.

We wish him/her success in all future endeavours.

Training Coordinator

Head of HR-L&D

CONTENT

1.	INTRODUCTION
2.	SAFETY AWARENESS
3.	 SHOP DESCRIPTION RAW MATERIAL HANDLING PLANT (RMHP) SINTER PLANT COKE-OVEN BLAST FURNACE STEEL MELTING SHOP(SMS) AND CONTINOUS CASTING SHOP (CCS) WIRED ROD AND BAR MILL UNIVERSAL SECTION MILL
4.	BLAST FURNACE COKE PROPERTIES AND THE INFLUENCE ON OFF-GAS DUST • COKE (BLAST FURNACE) • OVERVIEW OF THE BLAST FURNACE PROCESS • COKE DEGRADATION IN THE BLAST FURNACE • INTRODUCTION: CSR AND CRI ANALYSIS • FLUE DUST CHARACTERISTIC AND OBSERVATION
5.	CONCLUSION

GURU GHASIDAS VISHWAVIDYALAYA BILASPUR - 495009

Summer Training Report

On

"How to achieve zero liquid discharge in power plants"

At

NATIONAL THERMAL POWER CORPORATION LIMITED SIPAT

Submitted by Dimpal Gautam (22021118) Guided by

Mr. Nakka Ramesh

DEPARTMENT OF CHEMICAL ENGINEERING

School Of Studies Engineering & Technology

GURU GHASIDAS VISHWAVIDYALAYA, BILASPUR (C.G.)

(A Central University Established By The Central University Act 2009 No. 25 of 2009)

July 2025

Table Of Contents

6	ontents	
AC	KNOWLEDGEMENT	.1
DE	CLARATION	11
1.1	NTRODUCTION	. 1
2.0	OMPANY PROFILE	. 2
3.11	NTERNSHIP ACTIVITIES	. 3
4. 1	PROJECT SUMMARY	/
4	4.1. Objective of the Project	/
4	4.2. Introduction to Zero Liquid Discharge (ZLD)	/
4	4.3. Need for ZLD.	8
4	4.4. Overview of Power Plant Water Usage and Wastewater Generation	8
4	4.4.1. Cooling Systems:	8
4	1.4.2. Boiler Feed Water:	ð
4	4.4.3. Ash Handling:	8
4	1.4.4. Cleaning and General Use:	9
4	4.5. Technologies Used in Achieving ZLD	
4	4.5.1. Pre-treatment:	
4	4.5.2. Reverse Osmosis:	10
4	4.5.3. Multiple Effect Evaporator (MEE)	10
4	4.5.4. Crystallizer:	10
4	4.5.5. Brine Concentrators:	10
2	4.6. Advantages and Benefits of ZLD:	10
- 4	4.7. Challenges in Implementing ZLD:	1
4.8	. Conclusions and Findings	1
5.	I FARNING OUTCOMES	12
6.	CONCLUSION	13
7	REFERENCES	14

CERTIFICATE OF VOCATIONAL TRAINING - 2025 REGIONAL LEARNING INSTITUTE, NTPC, SIPAT क्षेत्रीय ज्ञानार्जन संस्थान, एनटीपीसी, सीपत व्यावसायिक प्रशिक्षण प्रमाण पत्र - 2025

THE CERTIFICATE IS AWARDED TO DIMPAL GAUTAM

VT Roll No -VT25CHEM021 Branch - CHEMICAL ENGINEERING

Name of College/Institute - GURU GHASIDAS VISHWAVIDYALAYA, BILASPUR

16/06/2025 to 15/07/2025. The participant has successfully completed the course and has also completed the For satisfactorily completing Vocational Training at NTPC, Sipat, Bilaspur for a period of four weeks from project assigned to him/her as part of this course. We wish him/her a bright and successful future.

DATE -19/07/2025

Ref No. RLI/SIPAT/VT/CERT/2025/VT25CHEM021

Sames

Nakka Ramesh Sr. Manager (RLI)

C B

KV Prasad GM & Head (RLI-Simulator)

Nickel-supported mixed metal oxides catalyst for Dry Reforming of Methane

An Internship Report

In Partial Fulfilment of the Requirement for Award of Degree of

Bachelor of Technology of the 4th Year in Chemical Engineering

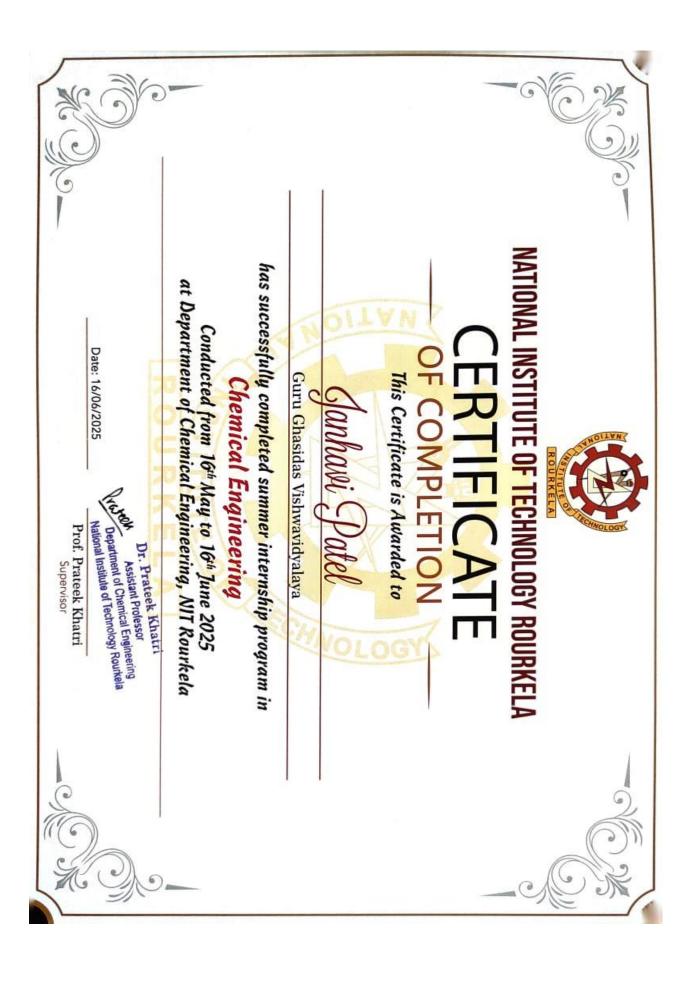
Submitted By

Janhavi Patel (22021119)

Under the Guidance of

Dr. Prateek Khatri

Assistant Professor



DEPARTMENT OF CHEMICAL ENGINEERING
SCHOOL OF STUDIES OF ENGINEERING & TECHNOLOGY
GURU GHASIDAS VISHWAVIDYALAYA, BILASPUR (C.G.)
July 2025

ABSTRACT

The rapid growth of the global population and ongoing socioeconomic development have significantly increased worldwide energy demands, leading to a surge in fossil fuel usage and a consequential rise in greenhouse gas emissions. These emissions, primarily composed of stable and hazardous gases like CO₂ and CH₄, are major contributors to pressing environmental problems such as global warming, unpredictable weather patterns, and the loss of biodiversity. In response to these challenges, the dry reforming of methane (DRM) presents a promising strategy by converting greenhouse gases into valuable syngas. However, DRM's highly endothermic nature and tendency for side reactions pose considerable catalytic challenges.

This study investigates the performance of a nickel-based catalyst supported on a ceria-magnesia (CeO₂-MgO) mixed oxide for the DRM process. The catalyst, containing 15 wt% Ni, was synthesized via coprecipitation of the support and subsequent impregnation of nickel. Ammonia was used as the precipitating agent for the support preparation. The resulting catalyst was thoroughly characterized using X-ray diffraction (XRD), and BET surface area analysis. Our findings focus on how the combined use of CeO₂ and MgO as support materials enhances the catalyst's performance, specifically at lower DRM reaction temperatures, offering a viable approach to efficient syngas production while addressing environmental concerns related to greenhouse gas emissions.

GURU GHASHIDAS VISHWAVIDYALAYA BILASPUR- 495009

Summer Internship Report

Internship Done in:

NTPC SIPAT

On

Demineralization of water in power plants

Name: Jitesh Meher

Roll No.: 22021120

Branch: Chemical Engineering

Semester:- 7th

Guided By:- Mr. Nakka Ramesh

Internship Duration: 16th June 2025 to 15th July 2025

REGIONAL LEARNING INSTITUTE, NTPC, SIPAT के्षेत्रीय ज्ञानार्जन संस्थान, एनटीपीसी, सीपत CERTIFICATE OF VOCATIONAL TRAINING - 2025

व्यावसाययक प्रयिक्षण प्रमाण पत्र - 2025

THE CERTIFICATE IS AWARDED TO

JITESH MEHER

VT RollNo - VT25CHEM050

Branch – CHEMICAL ENGINEERING

Name of College/Institute - GURUGHASIDASVISHWAVIDYALAYA, BILASPUR

For satisfactorily completing Vocational Training at NTPC, Sipat, Bilaspur for a period of four weeks from 16/06/2025 to 15/07/2025. The participant has successfully completed the course and has also completed the project assigned to him/her as part of this course. We wish him/her a bright and successful future.

Ref No. RLI/SIPAT/VT/CERT/2025/VT25CHEM050

Nakka Ramesh Sr. Manager (RLI) KV Prasad GM&Head (RLI-Simulator)

Table Of Contents

Table of Contents

- 1. IntroductiontoDemineralization Plants
- 2. The CriticalNeedfor DM Plants in Power Generation ProblemsCaused by Dissolved Salts The ImpactofScaling and Corrosion
- 3. Sources of RawWater and Pre-treatment Processes
 CommonRawWater Sources
 Initial WaterPre-treatment
- 4. DemineralizationPlant Process Flow Diagram (PFD)
- 5. Detailed Explanation of Plant Components Raw Water Storage and Pumps Filtration Units (Multimedia and Activated Carbon) Mixed Bed Polishing Unit
- 6. Important Operating Parameters and Water Quality Control
 Total Dissolved Solids (TDS)
 Flow Rate and Pressure Drop
 Feed Water Quality Requirements
- 7. Safety Precautions and Emergency Protocols
 Chemical Handling and Personal Protective Equipment (PPE)
 General Best Practices and Ventilation
 Emergency Measures and Response
- 8. Future Scope and Technological Innovations
 AI-Based Smart Monitoring
 IoT and Mobile App Control
 Integration of Renewable Energy
- 9. Conclusion
- 10. References

A Project Report

On

An Overview of the

Viscose Plant

Submitted By

Kashish Sain

Under the Guidance of

Shivaji Patil

General Manager

Grasim Industries Limited, part of the Aditya Birla Group,

ranks amongst the top publicly listed companies in India

June 2025

MDEX Page No. Section Title Introduction & Background PSY - Viscose Plant Overview 3-5 Pulper and Homogenizer Section Pressing and Shredder Section 7-9 **Aging Section** 9-11 Hopper Section 11-13 Simplex Section - Xanthation 13-15 Dissolver Section 15-19 GCF and VRR Section

26th June 2025

TO WHOMSOEVER IT MAY CONCERN

This is to certify that Ms. Kashish Sain, has successfully completed internship from 26th May 2025 to 25th June 2025 at Grasim Industries Limited, VFY – Fashion Yarn Business, Kalyan Unit.

As part of the Internship programme, she worked in the Prod - PSY - Viscose department. She has worked on the project on "An Overview of the Viscose Plant". The objective of this project was to understand and gain hands-on exposure to plant operations, understand key technical processes like pulping, xanthation, dissolution, filtration, and spinning, and observe how theoretical concepts are applied in an industrial setup.

During the internship period, she took keen interest in the working of the mentioned departments. She is hard-working and diligent. We wish her success in all future endeavors.

For Grasim Industries Limited VFY – Fashion Yarn Business, Kalyan Unit.

Shrikant B Gore
Function Head
Human Resources

20.50

Grasim Industries Limited (VFY – Fashion Yarn Business)

Unit: Century Rayon, B. K. Birla Marg, Shahad - 421 103, Dist. Thane, Maharashtra, INDIA.
T: +91 251 2733670 (10 Lines) | F: +91 251 2730064

E: century.rayon@adityabirla.com | W; www.raysil.co.in / www.grasim.com
Registered Office: Birlagram, Nagda - 456 331 (M.P.) | Corporate ID No.: L17124MP1947PLC000410

A Internship Report on Transformer Oil Analysis

Submitted in partial fulfilment of the requirement of the degree of Bachelor Of Technology of the 4th Year

In Chemical Engineering

Submitted by

Name Roll No.

MADASU NAGA 22021122

DEPARTMENT OF CHEMICAL ENGINEERING School of Studies Engineering & Technology GURU GHASIDAS VISHWAVIDYALAYA, BILASPUR (C.G.)

(A Central University Established by The Central University Act 2009 No. 25 of 2009)

Table of Contents

Acknowledgement	ii
Declaration	.iii
1.Introduction	1
2.Company profile	2-3
3.Project Summary	4-9
3.1. Objective Of Project	4
3.2. Functions of Transformer Oil	4-5
3.3. Why Transformer Oil is Necessary	.6-7
3.4. Types of Transformer Oil	.7-9
4. Safety Precautions in Transformer Oil Handling	.10-11
5.Conclusion.	.12
6.Reference.	13

Internship Certificate

REGIONAL LEARNING INSTITUTE, NTPC, SIPAT क्षेत्रीय ज्ञानार्जन संस्थान, एनटीपीसी, सीपत CERTIFICATE OF VOCATIONAL TRAINING - 2025

व्यावसायिक प्रशिक्षण प्रमाण पत्र - 2025

THE CERTIFICATE IS AWARDED TO

MADASU NAGA

VT Roll No -VT25CHEM041

Branch - CHEMICAL ENGINEERING

Name of College/Institute - GURU GHASIDAS VISHWAVIDYALAYA,BILASPUR

For satisfactorily completing **Vocational Training at NTPC**, **Sipat**, **Bilaspur** for a period of four weeks from 16/06/2025 to 15/07/2025. The participant has successfully completed the course and has also completed the project assigned to him/her as part of this course. We wish him/her a bright and successful future.

DATE -19/07/2025

Ref No. RLI/SIPAT/VT/CERT/2025/VT25CHEM041

Lemes

Nakka Ramesh Sr. Manager (RLI) KV Prasad GM & Head (RLI-Simulator)

Formation of Ni/CeO₂-MgO catalyst for Dry Reforming of Methane

An Internship Report

In Partial Fulfilment of the Requirement for Award of Degree of

Bachelor of Technology of the 4th Year in Chemical Engineering

Submitted By

Mahi Srivastava (22021123)

Under the Guidance of

Dr. Prateek Khatri

Assistant Professor

(NIT Rourkela)

DEPARTMENT OF CHEMICAL ENGINEERING
SCHOOL OF STUDIES OF ENGINEERING & TECHNOLOGY
GURU GHASIDAS VISHWAVIDYALAYA, BILASPUR (C.G.)
July 2025

CERTIFICATE

Certified that the Major Project Report entitled "Formation of Ni/CeO₂-MgO catalyst for Dry Reforming of Methane" submitted by Mahi Srivastava of B.Tech. 7th semester, in partial fulfillment of the requirements for the award of degree in Bachelor of Technology (B. Tech) in Chemical Engineering, is according to the students' own investigation carried out by them in the Department of Chemical Engineering, NIT Rourkela, during the session 2025-26.

Prof. Amit JainHoD

Department of Chemical Engineering
SoS of Engineering & Technology, GGV

Dr. Prateek KhatriSupervisor

Department of Chemical Engineering National Institute of Technology, Rourkela

ABSTRACT

The rapid growth of the global population and ongoing socioeconomic development have significantly increased worldwide energy demands, leading to a surge in fossil fuel usage and a consequential rise in greenhouse gas emissions. These emissions, primarily composed of stable and hazardous gases like CO₂ and CH₄, are major contributors to pressing environmental problems such as global warming, unpredictable weather patterns, and the loss of biodiversity. In response to these challenges, the dry reforming of methane (DRM) presents a promising strategy by converting greenhouse gases into valuable syngas. However, DRM's highly endothermic nature and tendency for side reactions pose considerable catalytic challenges.

This study investigates the performance of a nickel-based catalyst supported on a ceria-magnesia (CeO₂-MgO) mixed oxide for the DRM process. The catalyst, containing 15 wt% Ni, was synthesized via coprecipitation of the support and subsequent impregnation of nickel. Ammonia was used as the precipitating agent for the support preparation. The resulting catalyst was thoroughly characterized using X-ray diffraction (XRD), and BET surface area analysis. Our findings focus on how the combined use of CeO₂ and MgO as support materials enhances the catalyst's performance, specifically at lower DRM reaction temperatures, offering a viable approach to efficient syngas production while addressing environmental concerns related to greenhouse gas emissions.

A Project Report

on

COAL ANALYSIS AND IT'S EFFECT ON COMBUSTION

Submitted in partial fulfilment of the requirement for award of degree of

Bachelor of Technology in Chemical Engineering

Submitted by

Mayank Dewangan

22021124

Guide

Nakka Ramesh
Sr. Manager (RLI)
REGIONAL LEARNING INSTITUTE,
NTPC, SIPAT

DEPARTMENT OF CHEMICAL ENGINEERING School of Studies of Engineering & Technology GURU GHASIDAS VISHWAVIDYALAYA, BILASPUR (C.G.)

(A Central University Established by the Central University Act 2009 No. 25 of 2009)

REGIONAL LEARNING INSTITUTE, NTPC, SIPAT क्षेत्रीय ज्ञानार्जन संस्थान, एनटीपीसी, सीपत CERTIFICATE OF VOCATIONAL TRAINING - 2025

व्यावसायिक प्रशिक्षण प्रमाण पत्र - 2025

THE CERTIFICATE IS AWARDED TO

MAYANK DEWANGAN

VT Roll No - VT25CHEM028 Branch - CHEMICAL ENGINEERING

Name of College/Institute - GURU GHASIDAS VISHWAVIDYALAYA, BILASPUR

For satisfactorily completing Vocational Training at NTPC, Sipat, Bilaspur for a period of four weeks from 16/06/2025 to 15/07/2025. The participant has successfully completed the course and has also completed the project assigned to him/her as part of this course. We wish him/her a bright and successful future.

Nakka Ramesh Sr. Manager (RLI)

KV Prasad GM & Head (RLI-Simulator)

Ref No. RLI/SIPAT/VT/CERT/2025/VT25CHEM028

Table Of Contents

Acknowledgement	(i)
Declaration	(ii)
1. Introduction	(1)
2. Classification and Types of Coal	(2)
3. Combustion Process and Efciency	(4)
4. Impact of coal quality on power plant operation	(6)
5. Ash handling and environmental aspect	(10)
6. Conclusion	(14)

SUMMER TRAINING REPORT

AT

NATIONAL THERMAL POWER CORPORATION (SIPAT)

ON

WATER CHEMISTRY FOR POWER PLANT WITH SPECIFIC REFERENCE TO

SUPERCRITICAL BOILER

(June 2025-July 2025)

(SUBMITTED BY)

MOHIT AASHUTOSH HARSHVARDHAN

(ROLL NUMBER: 22021125)

(ENROLLMENT NUMBER: GGV/22/01525)

(2025-26)

Department of Chemical engineering GURU GHASIDAS VISHWAVIDYALAYA BILASPUR (C.G.) 495009

(A Central Universities established by Central Universities Act, 2009)

DECLARATION

I, Mohit Aashutosh Harshvardhan a student of chemical engineering department 7th semester in the year 2022-2026 having Roll No. 22021125, Enrollment No. (GGV/22/01525), hereby declare that I have undergone training at NATIONAL

Date: 12/08/2025

CONTENT

- 1. Abstract
- 2. Introduction
- 3. About organisation
- 4. Description of Supercritical Boiler
- 5. All Volatile Treatment (AVT)
- 6. Oxygenated Treatment (OT)
- 7. Additional Water Treatment Process
- 8. Comparison between AVT and OT Treatment
- 9. Conclusion

1. ABSTRACT

Water chemistry plays a critical role in ensuring the efficiency, safety, and longevity of power plant operations, particularly in supercritical boilers used in modern thermal power plants like NTPC Sipat Super Thermal Power Station. Supercritical boilers operate at high temperatures and pressures, necessitating stringent water quality to prevent corrosion, scaling, and fouling in boiler tubes and turbine system. This report explores the significance of maintaining the key parameters of water such as pH, dissolved oxygen, and conductivity to enhance thermal efficiency downtime. Emphasis is placed on the unique challenges posed by supercritical boiler systems, including the need of ultra-pure water to withstand extreme operating conditions and implementation of advanced treatment process like AVT (All Volatile Treatment), OT (Oxygenated Treatment), Phosphate Treatment, demineralisation and chemical dosing. By analyzing the water chemistry practises at NTPC Sipat, which sources water from the Hasdeo River, this study highlights the critical relationship between water quality and operational performance, underscoring the importance of robust water management strategies in achieving sustainable and efficient power generation.

Training and certificate

REGIONAL LEARNING INSTITUTE, NTPC, SIPAT क्षेत्रीय ज्ञानार्जन संस्थान, एनटीपीसी, सीपत

CERTIFICATE OF VOCATIONAL TRAINING - 2025

व्यावसायिक प्रशिक्षण प्रमाण पत्र - 2025

THE CERTIFICATE IS AWARDED TO MOHIT AASHUTOSH HARSHVARDHAN

VT Roll No - VT25CHEM007 Branch – CHEMICAL ENGINEERING

Name of College/Institute - GURU GHASIDAS VISHWAVIDYALAYA, BILASPUR

For satisfactorily completing Vocational Training at NTPC, Sipat, Bilaspur for a period of four weeks from 16/06/2025 to 15/07/2025. The participant has successfully completed the course and has also completed the project assigned to him/her as part of this course. We wish him/her a bright and successful future.

Ref No. RLUSIPAT/VT/CERT/2025/VT25CHEM007

Remer

Nakka Ramesh Sr. Manager (RLI) KV Prasad GM & Head (RLI-Simulator)

A Project Report

On

Design and Simulation of Distillation Column Using MATLAB

Submitted in Partial Fulfilment of the Requirement for Award of Degree of Bachelor of Technology in Chemical Engineering

Submitted By

MUKESH KUMAR

School of Studies, Engineering & Technology (Institute of Technology) Guru Ghasidas Vishwavidyalaya, Bilaspur Chhattisgarh-495009

Dates: 5th June to 15th July, 2025

Indian Institute of Chemical Engineers (IIChE)

Dr. H. L. Roy Building, Jadavpur University Campus,

188Raja Subodh Chandra Mullick Road, Kolkata 700 032

www.iiche.org.in/iichehqfb@gmail.com/director.ti@iiche.org.in

Certificate from the IIChE

This is to certify that MUKESH KUMAR from School of Studies, Engineering & Technology (Institute of Technology) Guru Ghasidas Vishwavidyalaya, Bilaspur Chhattisgarh-495009 successfully completed online summer internship programme in our organization. The matter embodied in this report is a genuine to the best of our knowledge and belief and has not been submitted before, neither to this Institute nor to any other organization for the fulfilment of the requirement of any course of study. During her internship tenure in IIChE, we found her as a hardworking, sincere, and diligent person and her behaviour and conduct was good. We wish her all the best for her future endeavour

Chief Coordinator, OIP-2025

ABSTRACT

Distillation is one of the most widely used separation processes in the chemical and petrochemical industries for the purification and separation of liquid mixtures based on differences in volatilities. The design and simulation of a distillation column require a strong understanding of thermodynamics, mass transfer, and process design principles. This report presents a detailed study on the design and simulation of a binary distillation column using MATLAB, with a particular focus on the graphical McCabe-Thiele method and stage-by-stage analysis.

The main objective of this internship project was to develop a MATLAB-based tool capable of calculating the number of theoretical stages, locating the feed stage, and generating the McCabe-Thiele diagram for a given set of input parameters such as distillate composition, bottoms composition, feed condition (q), relative volatility, and reflux ratio. MATLAB was selected due to its powerful computational capabilities, rich plotting functions, and ability to build customizable GUIs for user interactivity.

The code developed performs equilibrium calculations using relative volatility and constructs both the rectifying and stripping operating lines. The feed condition is represented through the q-line, and the intersection point of these lines determines the feed stage. A staircase construction method is implemented to calculate and visualize the number of ideal stages required to achieve the desired separation. Additionally, a Graphical User Interface (GUI) was created using MATLAB's App Designer, enabling users to input parameters dynamically and view the resulting simulation interactively.

Simulation results demonstrate that the number of theoretical stages is significantly influenced by the relative volatility, feed composition, and reflux ratio. The McCabe-Thiele diagram produced provides clear insight into how changes in design parameters affect the column performance. The GUI enhances the learning experience by simplifying interaction with complex calculations and improving visualization.

This project not only reinforces fundamental concepts of distillation but also highlights the versatility of MATLAB as a tool for process design, simulation, and educational purposes. Looking ahead, the scope of MATLAB in process engineering continues to grow with integration into digital twin systems, real-time optimization, and AI-driven control strategies. This work serves as a foundation for future exploration of more complex multicomponent distillation systems, dynamic simulations, and integration with industrial simulation platforms.

Report

On

Industrial Internship Training Program OSTP-2025

Subject Name: Petroleum Refining Engineering

Submitted in Partial Fulfilment of the Requirements for the mandatory Industrial Internship training programme

Submitted by: Mukesh Kumar Sahu (22021127)

GURU GHASIDAS CENTRAL UNIVERSITY BILASPUR C.G.

Dates: 5th June to 15th July, 2025

Terra Green Technologies Technologies Pvt. Ltd

12th Floor, Mithennium City IT Park, Whosh GP, Sec V, Kotkata – 799991 https://terra-green.in/contact/terragreen.ontp/mgmail.com

Certificate

This is to certify that MUKESH KUMAR SAHU from GURU CHASHDAS CENTRAL UNIVERSITY BILASPUR CHHATISGARH successfully completed online summer internship programme in our organization. The matter embodied in this report is a genuine to the best of our knowledge and belief and has not been submitted before, neither to this Institute nor to any other organization for the fulfilment of the requirement of any course of study. During her internship tenure in Terra Green Technologies Pvt. Ltd., we found her as a hardworking, sincere, and diligent person and her behaviour and conduct was good. We wish her all the best for her future endeavour.

Slayan 11st

Training Coordinator, OSTP-2025

Content	No. of pages
1. Introduction	2
2. Discussion on different industrial Processes & applications	8-10
3. Case study analysis with reference to industrial application (if any)	5-6
4. Scope of Research and development activity	2
5. Summary	1
6. Observation / Opinion	1