पेटेंट कार्यालय शासकीय जर्नल

OFFICIAL JOURNAL OF THE PATENT OFFICE

निर्गमन सं. 1/2025 ISSUE NO. 1/2025

शुक्रवार FRIDAY दिनांकः 03/01/2025

DATE: 03/01/2025

पेटेंट कार्यालय का एक प्रकाशन PUBLICATION OF THE PATENT OFFICE

(19) INDIA

(22) Date of filing of Application :29/11/2024

(43) Publication Date: 03/01/2025

(54) Title of the invention: DIGITAL TWIN SYSTEM FOR REAL-TIME CARBON FOOTPRINT OPTIMIZATION IN MANUFACTURING

:G06N0020000000, G06Q0010060000, (51) International G06Q0030018000, G06Q0010040000, classification

G06N0003044000

(86) International :NA Application No :NA Filing Date

(87) International : NA **Publication No**

(61) Patent of Addition:NA to Application Number :NA Filing Date

(62) Divisional to :NA **Application Number** :NA

Filing Date

(71)Name of Applicant:

1)Dr. Poonam Kumari

Address of Applicant : Assistant Professor, K.R.Mangalam University, Gurugram, Haryana, Pin Code: 122103 ------

2)Dr. Sanjay Kumar Patel 3)Dr. Pushpender Kadian 4)Mr. Vaibhav Chaudhary

Name of Applicant: NA Address of Applicant : NA (72)Name of Inventor: 1)Dr. Poonam Kumari

Address of Applicant: Assistant Professor, K.R.Mangalam University, Gurugram, Haryana, Pin Code: 122103 ------

2)Dr. Sanjay Kumar Patel

Address of Applicant : Associate Professor, Department of Commerce, Guru Ghasidas University, Bilaspur, Chhattisgarh, Pin Code: 495009 -----

3)Dr. Pushpender Kadian

Address of Applicant : Assistant Professor, Manipal University Jaipur, Dehmi Kalan, Bagru, Jaipur, Rajasthan, Pin Code: 303007

4)Mr. Vaibhav Chaudhary

Address of Applicant: Research Scholar, University of Rajasthan, Jaipur, Rajasthan, Pin Code: 302004 -----

(57) Abstract:

The present invention relates to a digital twin system designed for real-time carbon footprint monitoring and optimization in manufacturing. By integrating sensors, IoT devices, and advanced analytics, the system creates a dynamic virtual replica of manufacturing operations, enabling continuous tracking of carbon emissions, energy consumption, and resource usage. The platform employs machine learning algorithms to identify inefficiencies, predict emission trends, and recommend corrective actions. A key feature is the what-if scenario simulation, allowing users to test potential strategies for emissions reduction before implementation. The system also includes automated adaptive control to optimize machine operations and energy distribution in real-time, ensuring sustainability. Additionally, it provides regulatory compliance reporting and integrates seamlessly with existing manufacturing systems. Overall, the invention empowers manufacturers to reduce environmental impact while maintaining operational efficiency, supporting sustainable production in line with global environmental standards.

No. of Pages: 12 No. of Claims: 7